LÁSZLÓ E. SZABÓ Home Publications Courses Links CV Department Home

Chance, Causality, and Determinism in Quantum Mechanics

lecture course
 Thu 14:00 - 15:30, Room 221 (Múzeum krt. 4/i)

The first class of the course: February 16


  • The worldview of the end of 19th century physics: determinism, locality, Markovity
  • The fundamental conceptions of QM
  • QM as non-classical probability theory
    • Classical probability theory
    • Interpretations of probability
    • Probability on Hilbert lattice
    • Relationship between quantum and classical probability
    • Quantum logic
    • Two different interpretations of quantum probability
  • The measurement paradox
    • Two different interpretations of the wave function
    • The measurement paradox and its popular formulations (Schrödinger's cat, etc.)
  • No Go theorems of QM
    • Neumann theorem
    • Jauch--Piron theorem
    • Kochen--Specker theorem
    • The Einstein--Podolsky--Rosen argument
    • "Laboratory Record" theorem
    • Bell theorem
    • Reichenbach's common cause principle
    • Greenberger--Horne--Zeilinger theorem
    • No Go theorems and determinism
  • Free will and QM
    • The context of the probem of free will
    • The Newcomb paradox
    • Phenomenology of free will
    • Free will and QM
  • Possible Resolutions
    • The "Kolmogorovian Censorship" hypothesis
    • Arthur Fine’s Interpretation of Quantum Statistics

Suggested readings:

  • E. Szabó László: A nyitott jövő problémája - véletlen, kauzalitás és determinizmus a fizikában, Typotex Könyvkiadó, Budapest, 2002. (A könyv javított digitális kiadása PDF formában letölthető innen.) (L. E. Szabó, The Problem of Open Future: Chance, Causality, and Determinism in Physics, draft manuscript will be available)
  • Michael Redhead: Incompleteness, Nonlocality, and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics (Clarendon Paperbacks) [elérhető az olvasóteremben is]
  • H. Reichenbach: Philosophic Foundations of Quantum Mechanics, University of California Press, 1944.  [elérhető az olvasóteremben]
  • Bas C. van Fraassen: Quantum Mechanics: An Empiricist View  (Clarendon Paperbacks) [elérhető az olvasóteremben]
  • L. E. Szabó: The Einstein-Podolsky-Rosen Argument and the Bell Inequalities, Internet Encyclopedia of Philosophy (2008)
  • Pitowsky, I., Quantum Probability - Quantum Logic (Lecture Notes in Physics 321), (Springer, Berlin)(1989) 
  • M. Rédei: Quantum Logic in Algebraic Approach (Fundamental Theories of Physics Vol. 91.) Kluwer Academic Publishers, Dordrecht, Boston  and London, 1998.  (5. fejezet)
  • L. E. Szabó and Arthur Fine: A local hidden variable theory for the GHZ experiment, Physics Letters A295 (2002) pp. 229-240
  • L. E. Szabó: Critical reflections on quantum probability theory, in M. Rédei, M. Stoeltzner (eds.), John von Neumann and the Foundations of Quantum Physics, Vienna Circle Institute Yearbook 2001,  Kluwer, Dordrecht.
  • L. E. Szabó: What remains of probability?, in D. Dieks, W. Gonzalez, S. Hartmann, M. Weber, F. Stadler and T. Uebel (eds.), The Present Situation in the Philosophy of Science, Springer, forthcoming. [PDF]
  • L. E. Szabó: Objective probability-like things with and without  objective indeterminism, Studies in History and Philosophy of Modern Physics 38 (2007) 626–634 [Prepirnt (PDF)
  • G. Hofer-Szabó, M. Rédei, L. E. Szabó: The Principle of the Common Cause, Cambridge University Press, 2013.


Records and other materials

  TTK-s és IK-s BSc hallgatók!

Filozófia minor

TTK-s és IK-s BSc hallgatók!
Logika és tudományelmélet MA szak

A fizika filozófiája
A matematika filozófiája

Master's in Logic and Theory of Science

(in English)

The curriculum includes core courses in logic and formal approaches to philosophy of science, and advanced optional courses in logic, philosophy of mathematics, foundations of physics, logical methods in linguistics, philosophy of language, metaphysics, and formal models in social sciences. Students can choose a focus according to their own fields of interests. In general, the program is research oriented, aiming to prepare students for a PhD program.

>>> Further details



Bohm Eddington
Fine Grünbaum
Bell Salmon
Belnap Einstein
Cartwright Lewis
Putnam Reichenbach
Carnap Van Fraassen
Von Neumann Shimony
Popper Earman