
Functional Programming for Logicians

Péter Mekis

Department of Logic, ELTE Budapest

Session 3: 2019 February 25

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 1 / 5

Lazy evaluation

Boolean expressions are evaluated only until their value is set:
> 1==2 && head "" == ’a’

False

The same conditions in a different order raise error:
> head "" == ’a’ && 1 == 2

*** Exception: Prelude.head: empty list

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 2 / 5

Lazy evaluation

Boolean expressions are evaluated only until their value is set:
> 1==2 && head "" == ’a’

False

The same conditions in a different order raise error:
> head "" == ’a’ && 1 == 2

*** Exception: Prelude.head: empty list

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 2 / 5

Lazy evaluation

Boolean expressions are evaluated only until their value is set:
> 1==2 && head "" == ’a’

False

The same conditions in a different order raise error:
> head "" == ’a’ && 1 == 2

*** Exception: Prelude.head: empty list

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 2 / 5

Lazy evaluation

Boolean expressions are evaluated only until their value is set:
> 1==2 && head "" == ’a’

False

The same conditions in a different order raise error:
> head "" == ’a’ && 1 == 2

*** Exception: Prelude.head: empty list

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 2 / 5

Lazy evaluation

Guard conditions are evaluated only up to the first one that is true:
howLong :: String -> String

howLong s

| s == "" = "empty word"

| tail s == "" = "single letter word"

| otherwise = "multiletter word"

> howLong ""

empty string

The same conditions in a different order raise error for ‘""’:
howLong’ :: String -> String

howLong’ s

| tail s == "" = "single letter string"

| s == "" = "empty string"

| otherwise = "multiletter word"

> howLong’ ""

*** Exception: Prelude.head: empty list

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 3 / 5

Lazy evaluation

Guard conditions are evaluated only up to the first one that is true:
howLong :: String -> String

howLong s

| s == "" = "empty word"

| tail s == "" = "single letter word"

| otherwise = "multiletter word"

> howLong ""

empty string

The same conditions in a different order raise error for ‘""’:
howLong’ :: String -> String

howLong’ s

| tail s == "" = "single letter string"

| s == "" = "empty string"

| otherwise = "multiletter word"

> howLong’ ""

*** Exception: Prelude.head: empty list

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 3 / 5

Lazy evaluation

Guard conditions are evaluated only up to the first one that is true:
howLong :: String -> String

howLong s

| s == "" = "empty word"

| tail s == "" = "single letter word"

| otherwise = "multiletter word"

> howLong ""

empty string

The same conditions in a different order raise error for ‘""’:
howLong’ :: String -> String

howLong’ s

| tail s == "" = "single letter string"

| s == "" = "empty string"

| otherwise = "multiletter word"

> howLong’ ""

*** Exception: Prelude.head: empty list

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 3 / 5

Lazy evaluation

Guard conditions are evaluated only up to the first one that is true:
howLong :: String -> String

howLong s

| s == "" = "empty word"

| tail s == "" = "single letter word"

| otherwise = "multiletter word"

> howLong ""

empty string

The same conditions in a different order raise error for ‘""’:
howLong’ :: String -> String

howLong’ s

| tail s == "" = "single letter string"

| s == "" = "empty string"

| otherwise = "multiletter word"

> howLong’ ""

*** Exception: Prelude.head: empty list

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 3 / 5

Lazy evaluation

Guard conditions are evaluated only up to the first one that is true:
howLong :: String -> String

howLong s

| s == "" = "empty word"

| tail s == "" = "single letter word"

| otherwise = "multiletter word"

> howLong ""

empty string

The same conditions in a different order raise error for ‘""’:
howLong’ :: String -> String

howLong’ s

| tail s == "" = "single letter string"

| s == "" = "empty string"

| otherwise = "multiletter word"

> howLong’ ""

*** Exception: Prelude.head: empty list

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 3 / 5

Lazy evaluation

Guard conditions are evaluated only up to the first one that is true:
howLong :: String -> String

howLong s

| s == "" = "empty word"

| tail s == "" = "single letter word"

| otherwise = "multiletter word"

> howLong ""

empty string

The same conditions in a different order raise error for ‘""’:
howLong’ :: String -> String

howLong’ s

| tail s == "" = "single letter string"

| s == "" = "empty string"

| otherwise = "multiletter word"

> howLong’ ""

*** Exception: Prelude.head: empty list

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 3 / 5

Lazy evaluation

otherwise’ is just an alias for ‘True’. howLong’’ :: String ->

String

howLong’’ s

| otherwise = "multiletter word"

| s == "" = "empty word"

| tail s == "" = "single letter word"

> howLong’’ ""

multiletter word

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 4 / 5

Lazy evaluation

otherwise’ is just an alias for ‘True’. howLong’’ :: String ->

String

howLong’’ s

| otherwise = "multiletter word"

| s == "" = "empty word"

| tail s == "" = "single letter word"

> howLong’’ ""

multiletter word

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 4 / 5

Lazy evaluation

otherwise’ is just an alias for ‘True’. howLong’’ :: String ->

String

howLong’’ s

| otherwise = "multiletter word"

| s == "" = "empty word"

| tail s == "" = "single letter word"

> howLong’’ ""

multiletter word

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 4 / 5

Lazy evaluation

An infinite list of variables:

data Var = V Integer

indices :: [Integer]

indices = [0..]

variables = map V indices

The first k numbers divisible by n:
firstDiv :: Int -> Integer -> Integer

firstDiv k n = take k [i | i <- [0..], i ‘mod‘ n == 0]

Don’t use this, not very fast...

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 5 / 5

Lazy evaluation

An infinite list of variables:
data Var = V Integer

indices :: [Integer]

indices = [0..]

variables = map V indices

The first k numbers divisible by n:
firstDiv :: Int -> Integer -> Integer

firstDiv k n = take k [i | i <- [0..], i ‘mod‘ n == 0]

Don’t use this, not very fast...

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 5 / 5

Lazy evaluation

An infinite list of variables:
data Var = V Integer

indices :: [Integer]

indices = [0..]

variables = map V indices

The first k numbers divisible by n:
firstDiv :: Int -> Integer -> Integer

firstDiv k n = take k [i | i <- [0..], i ‘mod‘ n == 0]

Don’t use this, not very fast...

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 5 / 5

Lazy evaluation

An infinite list of variables:
data Var = V Integer

indices :: [Integer]

indices = [0..]

variables = map V indices

The first k numbers divisible by n:
firstDiv :: Int -> Integer -> Integer

firstDiv k n = take k [i | i <- [0..], i ‘mod‘ n == 0]

Don’t use this, not very fast...

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 5 / 5

Lazy evaluation

An infinite list of variables:
data Var = V Integer

indices :: [Integer]

indices = [0..]

variables = map V indices

The first k numbers divisible by n:
firstDiv :: Int -> Integer -> Integer

firstDiv k n = take k [i | i <- [0..], i ‘mod‘ n == 0]

Don’t use this, not very fast...

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 5 / 5

Lazy evaluation

An infinite list of variables:
data Var = V Integer

indices :: [Integer]

indices = [0..]

variables = map V indices

The first k numbers divisible by n:

firstDiv :: Int -> Integer -> Integer

firstDiv k n = take k [i | i <- [0..], i ‘mod‘ n == 0]

Don’t use this, not very fast...

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 5 / 5

Lazy evaluation

An infinite list of variables:
data Var = V Integer

indices :: [Integer]

indices = [0..]

variables = map V indices

The first k numbers divisible by n:
firstDiv :: Int -> Integer -> Integer

firstDiv k n = take k [i | i <- [0..], i ‘mod‘ n == 0]

Don’t use this, not very fast...

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 5 / 5

Lazy evaluation

An infinite list of variables:
data Var = V Integer

indices :: [Integer]

indices = [0..]

variables = map V indices

The first k numbers divisible by n:
firstDiv :: Int -> Integer -> Integer

firstDiv k n = take k [i | i <- [0..], i ‘mod‘ n == 0]

Don’t use this, not very fast...

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 5 / 5

Lazy evaluation

An infinite list of variables:
data Var = V Integer

indices :: [Integer]

indices = [0..]

variables = map V indices

The first k numbers divisible by n:
firstDiv :: Int -> Integer -> Integer

firstDiv k n = take k [i | i <- [0..], i ‘mod‘ n == 0]

Don’t use this, not very fast...

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 3: 2019 February 25 5 / 5

