Functional Programming for Logicians

Péter Mekis
Department of Logic, ELTE Budapest
Session 2: 2019 February 18

Static vs dynamic typing

```
Python
def foo(s):
    if s == " ": return 1
    else: return "1"
print(foo(input()))
```


Static vs dynamic typing

```
Python
def foo(s):
    if s == " ": return 1
    else: return "1"
print(foo(input()))
```

Runs without error for any input.

Static vs dynamic typing

Python

```
def foo(s):
        if \(s==\) " ": return 1
        else: return "1"
print(foo(input()))
```

Runs without error for any input.

Haskell

$$
\begin{aligned}
& \text { foo : : String -> a } \\
& \text { foo } \mathrm{x} \\
& \text { | } \mathrm{x}==\text { " " = } 1 \\
& \text { | otherwise = "1" }
\end{aligned}
$$

Static vs dynamic typing

Python

```
def foo(s):
        if \(s==\) " ": return 1
        else: return "1"
print(foo(input()))
```

Runs without error for any input.

Haskell

```
foo :: String -> a
foo x
    | x == " " = 1
    | otherwise = "1"
```


Strong vs weak typing

```
Haskell
foo :: a -> Int
```


Strong vs weak typing

```
Haskell
foo :: a -> Int
```

Doesn't compile.

Strong vs weak typing

```
Haskell
    foo :: a -> Int
    foo x = x + 1
    Doesn't compile.
Python
def foo(s):
    if s == " ": return 1
    else: return "1"
print(foo(input()) + 1)
```


Strong vs weak typing

```
Haskell
    foo :: a -> Int
    foo x = x + 1
Python
def foo(s):
    if s == " ": return 1
    else: return "1"
print(foo(input()) + 1)
```

 Doesn't compile.
 Any input other than
" " raises a runtime error.

Strong vs weak typing

Haskell

$$
\begin{aligned}
& \text { foo }:: a->\text { Int } \\
& \text { foo } x=x+1
\end{aligned}
$$

Doesn't compile.

Python

def foo(s):
if $s=="$ ": return 1
else: return "1"
print(foo(input()) + 1)
JavaScript

Any input other than
" " raises a runtime error.

```
function foo(x) {
```

```
    if (x == " ") {return 1}
    else {return "1"}
\}
document.writeln(foo(" ") + 1);
document.writeln(foo("@") + 1);
}
document.writeln(foo("@") + 1);
```


Strong vs weak typing

Haskell

$$
\begin{aligned}
& \text { foo }:: a->\text { Int } \\
& \text { foo } x=x+1
\end{aligned}
$$

Doesn't compile.

Python

def foo(s):
if $s=="$ ": return 1
else: return "1"
print(foo(input()) + 1)
JavaScript

```
function foo(x) {
```

 if (\(\mathrm{x}==\) " ") \{return 1\}
 else \{return "1"\}
 \}
Any input other than
" " raises a runtime error.

No error is raised.
document.writeln(foo(" ") + 1);
document.writeln(foo("@") + 1);

Recursion

- "A journey of a thousand miles begins with a single step."

Recursion

- "A journey of a thousand miles begins with a single step."
- Laozi's approach to a journey:

```
take_journ (pres_loc) (dest):
```

if pres_loc == dest: stay(pres_loc)
else: take_journ (take_a_step(pres_loc)) (dest)

Recursion

- "A journey of a thousand miles begins with a single step."
- Laozi's approach to a journey:
take_journ (pres_loc) (dest):
if pres_loc == dest: stay(pres_loc)
else: take_journ (take_a_step(pres_loc)) (dest)
- Structure:
- outer function to be defined: take_journ
- inner function used in the definition: take_a_step: when applying take_a_step, take_journ calls itself (recurs)
- base case: pres_loc == dest - the return value is given without without calling take_journ

Recursion

- "A journey of a thousand miles begins with a single step."
- Laozi's approach to a journey:
take_journ (pres_loc) (dest):
if pres_loc == dest: stay(pres_loc)
else: take_journ (take_a_step(pres_loc)) (dest)
- Structure:
- outer function to be defined: take_journ
- inner function used in the definition: take_a_step: when applying take_a_step, take_journ calls itself (recurs)
- base case: pres_loc == dest - the return value is given without without calling take_journ
- Addition:
- outer function: (+)
- inner function: succ
- base case: $\mathrm{n}+0=\mathrm{n}$

List: a recursive type class

- Processing a list:
- outer function: process the list
- inner function: read the head
- base case: empty list

List: a recursive type class

- Processing a list:
- outer function: process the list
- inner function: read the head
- base case: empty list
- Haskell's definition of lists:
- data [] a = [] | a : [a]
- $[0,1,2]==0:(1:(2:[]))$
- "Donald" == 'D':('o':('n':('a':('l':('d':[])))))

List: a recursive type class

- Processing a list:
- outer function: process the list
- inner function: read the head
- base case: empty list
- Haskell's definition of lists:
- data [] a = [] | a : [a]
- $[0,1,2]==0:(1:(2:[]))$
- "Donald" == 'D':('o':('n':('a':('l':('d':[])))))
- Cf. definition of tuples in set theory:
- $(a, b)=\{\{a\},\{a, b\}\}$
- $\left(a_{0}, \ldots, a_{n}\right)=\left(a_{0},\left(a_{1}, \ldots, q_{n}\right)\right)$

List: a recursive type class

- Processing a list:
- outer function: process the list
- inner function: read the head
- base case: empty list
- Haskell's definition of lists:
- data [] a = [] | a : [a]
- $[0,1,2]==0:(1:(2:[]))$
- "Donald" == 'D':('o':('n':('a':('l':('d':[])))))
- Cf. definition of tuples in set theory:
- $(a, b)=\{\{a\},\{a, b\}\}$
- $\left(a_{0}, \ldots, a_{n}\right)=\left(a_{0},\left(a_{1}, \ldots, q_{n}\right)\right)$
- Wouldn't work with haskell's List class, items have different types.

List: a recursive type class

- Processing a list:
- outer function: process the list
- inner function: read the head
- base case: empty list
- Haskell's definition of lists:
- data [] a = [] | a : [a]
- $[0,1,2]==0:(1:(2:[]))$
- "Donald" == 'D':('o':('n':('a':('l':('d':[])))))
- Cf. definition of tuples in set theory:
- $(a, b)=\{\{a\},\{a, b\}\}$
- $\left(a_{0}, \ldots, a_{n}\right)=\left(a_{0},\left(a_{1}, \ldots, q_{n}\right)\right)$
- Wouldn't work with haskell's List class, items have different types.
- Pairs as primitives in typed set theories and NF work similarly as Haskell's list constructor.

List: a recursive type class

- Processing a list:
- outer function: process the list
- inner function: read the head
- base case: empty list
- Haskell's definition of lists:
- data [] a = [] | a : [a]
- $[0,1,2]==0:(1:(2:[]))$
- "Donald" == 'D':('o':('n':('a':('l':('d':[])))))
- Cf. definition of tuples in set theory:
- $(a, b)=\{\{a\},\{a, b\}\}$
- $\left(a_{0}, \ldots, a_{n}\right)=\left(a_{0},\left(a_{1}, \ldots, q_{n}\right)\right)$
- Wouldn't work with haskell's List class, items have different types.
- Pairs as primitives in typed set theories and NF work similarly as Haskell's list constructor.
- Common list operations:
- head(s) :: [a] -> a

List: a recursive type class

- Processing a list:
- outer function: process the list
- inner function: read the head
- base case: empty list
- Haskell's definition of lists:
- data [] a = [] | a : [a]
- $[0,1,2]==0:(1:(2:[]))$
- "Donald" == 'D':('o':('n':('a':('l':('d':[])))))
- Cf. definition of tuples in set theory:
- $(a, b)=\{\{a\},\{a, b\}\}$
- $\left(a_{0}, \ldots, a_{n}\right)=\left(a_{0},\left(a_{1}, \ldots, q_{n}\right)\right)$
- Wouldn't work with haskell's List class, items have different types.
- Pairs as primitives in typed set theories and NF work similarly as Haskell's list constructor.
- Common list operations:
- head(s) :: [a] -> a
- tail(s) :: [a] -> [a]

List: a recursive type class

- Processing a list:
- outer function: process the list
- inner function: read the head
- base case: empty list
- Haskell's definition of lists:
- data [] a = [] | a : [a]
- $[0,1,2]==0:(1:(2:[]))$
- "Donald" == 'D':('o':('n':('a':('l':('d':[])))))
- Cf. definition of tuples in set theory:
- $(a, b)=\{\{a\},\{a, b\}\}$
- $\left(a_{0}, \ldots, a_{n}\right)=\left(a_{0},\left(a_{1}, \ldots, q_{n}\right)\right)$
- Wouldn't work with haskell's List class, items have different types.
- Pairs as primitives in typed set theories and NF work similarly as Haskell's list constructor.
- Common list operations:
- head(s) :: [a] -> a
- tail(s) :: [a] -> [a]
- (++) :: [a] -> [a] -> [a]

Case selection

- if-then-else:
nplus :: Int -> Int -> Int
nplus $n \mathrm{~m}=$ if $\mathrm{m}==0$ then n else succ (nplus n (pred m))

Case selection

- if-then-else:
nplus :: Int -> Int -> Int
nplus $n \mathrm{~m}=$ if $\mathrm{m}==0$ then n else succ (nplus n (pred m))
- pattern matching:

```
nplus' :: Int -> Int -> Int
nplus' \(n 0=n\)
nplus' n m = succ (nplus n (pred m))
```


Case selection

- if-then-else:
nplus :: Int -> Int -> Int
nplus $n \mathrm{~m}=$ if $\mathrm{m}==0$ then n else succ (nplus n (pred m))
- pattern matching:

```
nplus' :: Int -> Int -> Int
nplus' \(n 0=n\)
nplus' n m = succ (nplus n (pred m))
```

- guards:

```
nplus', :: Int -> Int -> Int
nplus'' n m
    | m == 0 = n
    | otherwise = succ (nplus n (pred m))
```

