
Functional Programming for Logicians

Péter Mekis

Department of Logic, ELTE Budapest

Session 2: 2019 February 18

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 1 / 6



Static vs dynamic typing

Python

def foo(s):

if s == " ": return 1

else: return "1"

print(foo(input()))

Runs without error for
any input.

Haskell

foo :: String -> a

foo x

| x == " " = 1

| otherwise = "1"

Doesn’t compile.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 2 / 6



Static vs dynamic typing

Python

def foo(s):

if s == " ": return 1

else: return "1"

print(foo(input()))

Runs without error for
any input.

Haskell

foo :: String -> a

foo x

| x == " " = 1

| otherwise = "1"

Doesn’t compile.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 2 / 6



Static vs dynamic typing

Python

def foo(s):

if s == " ": return 1

else: return "1"

print(foo(input()))

Runs without error for
any input.

Haskell

foo :: String -> a

foo x

| x == " " = 1

| otherwise = "1"

Doesn’t compile.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 2 / 6



Static vs dynamic typing

Python

def foo(s):

if s == " ": return 1

else: return "1"

print(foo(input()))

Runs without error for
any input.

Haskell

foo :: String -> a

foo x

| x == " " = 1

| otherwise = "1"

Doesn’t compile.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 2 / 6



Strong vs weak typing

Haskell

foo :: a -> Int

foo x = x + 1

Doesn’t compile.

Python

def foo(s):

if s == " ": return 1

else: return "1"

print(foo(input()) + 1)

Any input other than
” ” raises a runtime

error.

JavaScript

function foo(x) {
if (x == " ") {return 1}
else {return "1"}

}
document.writeln(foo(" ") + 1);

document.writeln(foo("@") + 1);

No error is raised.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 3 / 6



Strong vs weak typing

Haskell

foo :: a -> Int

foo x = x + 1 Doesn’t compile.

Python

def foo(s):

if s == " ": return 1

else: return "1"

print(foo(input()) + 1)

Any input other than
” ” raises a runtime

error.

JavaScript

function foo(x) {
if (x == " ") {return 1}
else {return "1"}

}
document.writeln(foo(" ") + 1);

document.writeln(foo("@") + 1);

No error is raised.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 3 / 6



Strong vs weak typing

Haskell

foo :: a -> Int

foo x = x + 1 Doesn’t compile.

Python

def foo(s):

if s == " ": return 1

else: return "1"

print(foo(input()) + 1)

Any input other than
” ” raises a runtime

error.

JavaScript

function foo(x) {
if (x == " ") {return 1}
else {return "1"}

}
document.writeln(foo(" ") + 1);

document.writeln(foo("@") + 1);

No error is raised.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 3 / 6



Strong vs weak typing

Haskell

foo :: a -> Int

foo x = x + 1 Doesn’t compile.

Python

def foo(s):

if s == " ": return 1

else: return "1"

print(foo(input()) + 1)

Any input other than
” ” raises a runtime

error.

JavaScript

function foo(x) {
if (x == " ") {return 1}
else {return "1"}

}
document.writeln(foo(" ") + 1);

document.writeln(foo("@") + 1);

No error is raised.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 3 / 6



Strong vs weak typing

Haskell

foo :: a -> Int

foo x = x + 1 Doesn’t compile.

Python

def foo(s):

if s == " ": return 1

else: return "1"

print(foo(input()) + 1)

Any input other than
” ” raises a runtime

error.

JavaScript

function foo(x) {
if (x == " ") {return 1}
else {return "1"}

}
document.writeln(foo(" ") + 1);

document.writeln(foo("@") + 1);

No error is raised.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 3 / 6



Strong vs weak typing

Haskell

foo :: a -> Int

foo x = x + 1 Doesn’t compile.

Python

def foo(s):

if s == " ": return 1

else: return "1"

print(foo(input()) + 1)

Any input other than
” ” raises a runtime

error.

JavaScript

function foo(x) {
if (x == " ") {return 1}
else {return "1"}

}
document.writeln(foo(" ") + 1);

document.writeln(foo("@") + 1);

No error is raised.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 3 / 6



Recursion

“A journey of a thousand miles begins with a single step.”

Laozi’s approach to a journey:
take journ (pres loc) (dest):

if pres loc == dest: stay(pres loc)

else: take journ (take a step(pres loc)) (dest)

Structure:

outer function to be defined: take journ

inner function used in the definition: take a step: when applying
take a step, take journ calls itself (recurs)
base case: pres loc == dest – the return value is given without
without calling take journ

Addition:

outer function: (+)

inner function: succ

base case: n + 0 = n

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 4 / 6



Recursion

“A journey of a thousand miles begins with a single step.”

Laozi’s approach to a journey:
take journ (pres loc) (dest):

if pres loc == dest: stay(pres loc)

else: take journ (take a step(pres loc)) (dest)

Structure:

outer function to be defined: take journ

inner function used in the definition: take a step: when applying
take a step, take journ calls itself (recurs)
base case: pres loc == dest – the return value is given without
without calling take journ

Addition:

outer function: (+)

inner function: succ

base case: n + 0 = n

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 4 / 6



Recursion

“A journey of a thousand miles begins with a single step.”

Laozi’s approach to a journey:
take journ (pres loc) (dest):

if pres loc == dest: stay(pres loc)

else: take journ (take a step(pres loc)) (dest)

Structure:

outer function to be defined: take journ

inner function used in the definition: take a step: when applying
take a step, take journ calls itself (recurs)
base case: pres loc == dest – the return value is given without
without calling take journ

Addition:

outer function: (+)

inner function: succ

base case: n + 0 = n

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 4 / 6



Recursion

“A journey of a thousand miles begins with a single step.”

Laozi’s approach to a journey:
take journ (pres loc) (dest):

if pres loc == dest: stay(pres loc)

else: take journ (take a step(pres loc)) (dest)

Structure:

outer function to be defined: take journ

inner function used in the definition: take a step: when applying
take a step, take journ calls itself (recurs)
base case: pres loc == dest – the return value is given without
without calling take journ

Addition:

outer function: (+)

inner function: succ

base case: n + 0 = n

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 4 / 6



List: a recursive type class

Processing a list:
outer function: process the list
inner function: read the head
base case: empty list

Haskell’s definition of lists:
data [] a = [] | a : [a]

[0,1,2] == 0:(1:(2:[]))

"Donald" == ’D’:(’o’:(’n’:(’a’:(’l’:(’d’:[])))))

Cf. definition of tuples in set theory:
(a, b) = {{a}, {a, b}}
(a0, . . . , an) = (a0, (a1, . . . , qn))
Wouldn’t work with haskell’s List class, items have different types.
Pairs as primitives in typed set theories and NF work similarly as
Haskell’s list constructor.

Common list operations:
head(s) :: [a] -> a

tail(s) :: [a] -> [a]

(++) :: [a] -> [a] -> [a]

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 5 / 6



List: a recursive type class

Processing a list:
outer function: process the list
inner function: read the head
base case: empty list

Haskell’s definition of lists:
data [] a = [] | a : [a]

[0,1,2] == 0:(1:(2:[]))

"Donald" == ’D’:(’o’:(’n’:(’a’:(’l’:(’d’:[])))))

Cf. definition of tuples in set theory:
(a, b) = {{a}, {a, b}}
(a0, . . . , an) = (a0, (a1, . . . , qn))
Wouldn’t work with haskell’s List class, items have different types.
Pairs as primitives in typed set theories and NF work similarly as
Haskell’s list constructor.

Common list operations:
head(s) :: [a] -> a

tail(s) :: [a] -> [a]

(++) :: [a] -> [a] -> [a]

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 5 / 6



List: a recursive type class

Processing a list:
outer function: process the list
inner function: read the head
base case: empty list

Haskell’s definition of lists:
data [] a = [] | a : [a]

[0,1,2] == 0:(1:(2:[]))

"Donald" == ’D’:(’o’:(’n’:(’a’:(’l’:(’d’:[])))))

Cf. definition of tuples in set theory:
(a, b) = {{a}, {a, b}}
(a0, . . . , an) = (a0, (a1, . . . , qn))

Wouldn’t work with haskell’s List class, items have different types.
Pairs as primitives in typed set theories and NF work similarly as
Haskell’s list constructor.

Common list operations:
head(s) :: [a] -> a

tail(s) :: [a] -> [a]

(++) :: [a] -> [a] -> [a]

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 5 / 6



List: a recursive type class

Processing a list:
outer function: process the list
inner function: read the head
base case: empty list

Haskell’s definition of lists:
data [] a = [] | a : [a]

[0,1,2] == 0:(1:(2:[]))

"Donald" == ’D’:(’o’:(’n’:(’a’:(’l’:(’d’:[])))))

Cf. definition of tuples in set theory:
(a, b) = {{a}, {a, b}}
(a0, . . . , an) = (a0, (a1, . . . , qn))
Wouldn’t work with haskell’s List class, items have different types.

Pairs as primitives in typed set theories and NF work similarly as
Haskell’s list constructor.

Common list operations:
head(s) :: [a] -> a

tail(s) :: [a] -> [a]

(++) :: [a] -> [a] -> [a]

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 5 / 6



List: a recursive type class

Processing a list:
outer function: process the list
inner function: read the head
base case: empty list

Haskell’s definition of lists:
data [] a = [] | a : [a]

[0,1,2] == 0:(1:(2:[]))

"Donald" == ’D’:(’o’:(’n’:(’a’:(’l’:(’d’:[])))))

Cf. definition of tuples in set theory:
(a, b) = {{a}, {a, b}}
(a0, . . . , an) = (a0, (a1, . . . , qn))
Wouldn’t work with haskell’s List class, items have different types.
Pairs as primitives in typed set theories and NF work similarly as
Haskell’s list constructor.

Common list operations:
head(s) :: [a] -> a

tail(s) :: [a] -> [a]

(++) :: [a] -> [a] -> [a]

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 5 / 6



List: a recursive type class

Processing a list:
outer function: process the list
inner function: read the head
base case: empty list

Haskell’s definition of lists:
data [] a = [] | a : [a]

[0,1,2] == 0:(1:(2:[]))

"Donald" == ’D’:(’o’:(’n’:(’a’:(’l’:(’d’:[])))))

Cf. definition of tuples in set theory:
(a, b) = {{a}, {a, b}}
(a0, . . . , an) = (a0, (a1, . . . , qn))
Wouldn’t work with haskell’s List class, items have different types.
Pairs as primitives in typed set theories and NF work similarly as
Haskell’s list constructor.

Common list operations:
head(s) :: [a] -> a

tail(s) :: [a] -> [a]

(++) :: [a] -> [a] -> [a]

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 5 / 6



List: a recursive type class

Processing a list:
outer function: process the list
inner function: read the head
base case: empty list

Haskell’s definition of lists:
data [] a = [] | a : [a]

[0,1,2] == 0:(1:(2:[]))

"Donald" == ’D’:(’o’:(’n’:(’a’:(’l’:(’d’:[])))))

Cf. definition of tuples in set theory:
(a, b) = {{a}, {a, b}}
(a0, . . . , an) = (a0, (a1, . . . , qn))
Wouldn’t work with haskell’s List class, items have different types.
Pairs as primitives in typed set theories and NF work similarly as
Haskell’s list constructor.

Common list operations:
head(s) :: [a] -> a

tail(s) :: [a] -> [a]

(++) :: [a] -> [a] -> [a]

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 5 / 6



List: a recursive type class

Processing a list:
outer function: process the list
inner function: read the head
base case: empty list

Haskell’s definition of lists:
data [] a = [] | a : [a]

[0,1,2] == 0:(1:(2:[]))

"Donald" == ’D’:(’o’:(’n’:(’a’:(’l’:(’d’:[])))))

Cf. definition of tuples in set theory:
(a, b) = {{a}, {a, b}}
(a0, . . . , an) = (a0, (a1, . . . , qn))
Wouldn’t work with haskell’s List class, items have different types.
Pairs as primitives in typed set theories and NF work similarly as
Haskell’s list constructor.

Common list operations:
head(s) :: [a] -> a

tail(s) :: [a] -> [a]

(++) :: [a] -> [a] -> [a]

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 5 / 6



Case selection

if–then–else:
nplus :: Int -> Int -> Int

nplus n m = if m == 0 then n else succ (nplus n (pred m))

pattern matching:
nplus’ :: Int -> Int -> Int

nplus’ n 0 = n

nplus’ n m = succ (nplus n (pred m))

guards:
nplus’’ :: Int -> Int -> Int

nplus’’ n m

| m == 0 = n

| otherwise = succ (nplus n (pred m))

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 6 / 6



Case selection

if–then–else:
nplus :: Int -> Int -> Int

nplus n m = if m == 0 then n else succ (nplus n (pred m))

pattern matching:
nplus’ :: Int -> Int -> Int

nplus’ n 0 = n

nplus’ n m = succ (nplus n (pred m))

guards:
nplus’’ :: Int -> Int -> Int

nplus’’ n m

| m == 0 = n

| otherwise = succ (nplus n (pred m))

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 6 / 6



Case selection

if–then–else:
nplus :: Int -> Int -> Int

nplus n m = if m == 0 then n else succ (nplus n (pred m))

pattern matching:
nplus’ :: Int -> Int -> Int

nplus’ n 0 = n

nplus’ n m = succ (nplus n (pred m))

guards:
nplus’’ :: Int -> Int -> Int

nplus’’ n m

| m == 0 = n

| otherwise = succ (nplus n (pred m))

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 2: 2019 February 18 6 / 6


