
Functional Programming for Logicians

Péter Mekis

Department of Logic, ELTE Budapest

Session 1: 2019 February 11

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 1 / 1



Programming styles

Functional vs Procedural

Computation is evaluation of
mathematical functions.

A function transforms data
values to data values.

A program is a network of
function definitions with
function calls inside the
definitions.

Computation is execution of
procedures.

A procedure is a sequence of
commands, executed
sequentially, transforming
program states to program
states.

A program is a network of
procedure definitions, with
procedure calls inside the
definitions.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 2 / 1



Programming styles

Functional vs Procedural

Computation is evaluation of
mathematical functions.

A function transforms data
values to data values.

A program is a network of
function definitions with
function calls inside the
definitions.

Computation is execution of
procedures.

A procedure is a sequence of
commands, executed
sequentially, transforming
program states to program
states.

A program is a network of
procedure definitions, with
procedure calls inside the
definitions.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 2 / 1



Programming styles

Functional vs Procedural

Computation is evaluation of
mathematical functions.

A function transforms data
values to data values.

A program is a network of
function definitions with
function calls inside the
definitions.

Computation is execution of
procedures.

A procedure is a sequence of
commands, executed
sequentially, transforming
program states to program
states.

A program is a network of
procedure definitions, with
procedure calls inside the
definitions.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 2 / 1



Programming styles

Functional vs Procedural

Computation is evaluation of
mathematical functions.

A function transforms data
values to data values.

A program is a network of
function definitions with
function calls inside the
definitions.

Computation is execution of
procedures.

A procedure is a sequence of
commands, executed
sequentially, transforming
program states to program
states.

A program is a network of
procedure definitions, with
procedure calls inside the
definitions.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 2 / 1



Programming styles

Functional vs Procedural

Computation is evaluation of
mathematical functions.

A function transforms data
values to data values.

A program is a network of
function definitions with
function calls inside the
definitions.

Computation is execution of
procedures.

A procedure is a sequence of
commands, executed
sequentially, transforming
program states to program
states.

A program is a network of
procedure definitions, with
procedure calls inside the
definitions.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 2 / 1



Programming styles

Functional vs Procedural

Computation is evaluation of
mathematical functions.

A function transforms data
values to data values.

A program is a network of
function definitions with
function calls inside the
definitions.

Computation is execution of
procedures.

A procedure is a sequence of
commands, executed
sequentially, transforming
program states to program
states.

A program is a network of
procedure definitions, with
procedure calls inside the
definitions.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 2 / 1



Typed Lambda Calculus

Primitive types (eg. Int for integers, Char for characters, Bool for
Booleans)

Function types: α→ β is a function that takes a value of type α, and
returns a value of type β.

Function application: fα→βgα has type β.

Lambda abstraction: (λ. xαhβ) has type α→ β

Binary function types: α→ (β → γ) takes a value of type α, and
returns a function that takes a value of typ β, and returns a value of
type γ.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 3 / 1



Typed Lambda Calculus

Primitive types (eg. Int for integers, Char for characters, Bool for
Booleans)

Function types: α→ β is a function that takes a value of type α, and
returns a value of type β.

Function application: fα→βgα has type β.

Lambda abstraction: (λ. xαhβ) has type α→ β

Binary function types: α→ (β → γ) takes a value of type α, and
returns a function that takes a value of typ β, and returns a value of
type γ.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 3 / 1



Typed Lambda Calculus

Primitive types (eg. Int for integers, Char for characters, Bool for
Booleans)

Function types: α→ β is a function that takes a value of type α, and
returns a value of type β.

Function application: fα→βgα has type β.

Lambda abstraction: (λ. xαhβ) has type α→ β

Binary function types: α→ (β → γ) takes a value of type α, and
returns a function that takes a value of typ β, and returns a value of
type γ.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 3 / 1



Typed Lambda Calculus

Primitive types (eg. Int for integers, Char for characters, Bool for
Booleans)

Function types: α→ β is a function that takes a value of type α, and
returns a value of type β.

Function application: fα→βgα has type β.

Lambda abstraction: (λ. xαhβ) has type α→ β

Binary function types: α→ (β → γ) takes a value of type α, and
returns a function that takes a value of typ β, and returns a value of
type γ.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 3 / 1



Typed Lambda Calculus

Primitive types (eg. Int for integers, Char for characters, Bool for
Booleans)

Function types: α→ β is a function that takes a value of type α, and
returns a value of type β.

Function application: fα→βgα has type β.

Lambda abstraction: (λ. xαhβ) has type α→ β

Binary function types: α→ (β → γ) takes a value of type α, and
returns a function that takes a value of typ β, and returns a value of
type γ.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 3 / 1



Examples for various types

Int→ Int: unary operations on integers

eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters

eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers

eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters

eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values

eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers

eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers

eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



Examples for various types

Int→ Int: unary operations on integers
eg. (+3) 5 = 8; succ 12 = 13

Char→ Char: unary operations on characters
eg. nextchar ′c′ = ′d′, upper ′a′ = ′A′

Int→ Bool: properties of integers
eg. even 7 = False, prime 7 = True

Char→ Bool: properties of characters
eg. vowel ′a′ = True, isupper ′s′ = False

Bool→ Bool: properties of truth values
eg. isfalse ′True′ = False (is this function familiar...?)

Int→ (Int→ Int): binary operations on integers
eg. squaresum 5 7 = 74; min 8 12 = 8

Int→ (Int→ Bool): relations of integers
eg. twinprimes 11 13 = True; (<) 7 5 = False

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 4 / 1



System F

Type declarations are part of the object level syntax.

Type variables range over types, and are subject to lambda
abstraction.

We can define type classes: e.g. Prop = (α→ Bool)

Int→ Bool, Char→ Bool, and Bool→ Bool are all instances of the
Prop class.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 5 / 1



System F

Type declarations are part of the object level syntax.

Type variables range over types, and are subject to lambda
abstraction.

We can define type classes: e.g. Prop = (α→ Bool)

Int→ Bool, Char→ Bool, and Bool→ Bool are all instances of the
Prop class.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 5 / 1



System F

Type declarations are part of the object level syntax.

Type variables range over types, and are subject to lambda
abstraction.

We can define type classes: e.g. Prop = (α→ Bool)

Int→ Bool, Char→ Bool, and Bool→ Bool are all instances of the
Prop class.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 5 / 1



System F

Type declarations are part of the object level syntax.

Type variables range over types, and are subject to lambda
abstraction.

We can define type classes: e.g. Prop = (α→ Bool)

Int→ Bool, Char→ Bool, and Bool→ Bool are all instances of the
Prop class.

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 5 / 1



Haskell’s type system: a first glance

Int: 32 bit integers from −229 to 229 − 1.

Integer: integers of arbitrary size

Char: characters

Bool: truth values

a -> b: unary functions mapping from type a to type b

a -> (a -> b): binary functions mapping from types a and b to
type c

(Parenthses are usually omitted.)

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 6 / 1



Haskell’s type system: a first glance

Int: 32 bit integers from −229 to 229 − 1.

Integer: integers of arbitrary size

Char: characters

Bool: truth values

a -> b: unary functions mapping from type a to type b

a -> (a -> b): binary functions mapping from types a and b to
type c

(Parenthses are usually omitted.)

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 6 / 1



Haskell’s type system: a first glance

Int: 32 bit integers from −229 to 229 − 1.

Integer: integers of arbitrary size

Char: characters

Bool: truth values

a -> b: unary functions mapping from type a to type b

a -> (a -> b): binary functions mapping from types a and b to
type c

(Parenthses are usually omitted.)

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 6 / 1



Haskell’s type system: a first glance

Int: 32 bit integers from −229 to 229 − 1.

Integer: integers of arbitrary size

Char: characters

Bool: truth values

a -> b: unary functions mapping from type a to type b

a -> (a -> b): binary functions mapping from types a and b to
type c

(Parenthses are usually omitted.)

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 6 / 1



Haskell’s type system: a first glance

Int: 32 bit integers from −229 to 229 − 1.

Integer: integers of arbitrary size

Char: characters

Bool: truth values

a -> b: unary functions mapping from type a to type b

a -> (a -> b): binary functions mapping from types a and b to
type c

(Parenthses are usually omitted.)

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 6 / 1



Haskell’s type system: a first glance

Int: 32 bit integers from −229 to 229 − 1.

Integer: integers of arbitrary size

Char: characters

Bool: truth values

a -> b: unary functions mapping from type a to type b

a -> (a -> b): binary functions mapping from types a and b to
type c

(Parenthses are usually omitted.)

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 6 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].
eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].
eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]
eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements
eg. head

[a -> b] is the type class of lists of unary functions
eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].
eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].
eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]
eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements
eg. head

[a -> b] is the type class of lists of unary functions
eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].

eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].
eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]
eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements
eg. head

[a -> b] is the type class of lists of unary functions
eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].
eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].
eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]
eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements
eg. head

[a -> b] is the type class of lists of unary functions
eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].
eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].

eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]
eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements
eg. head

[a -> b] is the type class of lists of unary functions
eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].
eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].
eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]
eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements
eg. head

[a -> b] is the type class of lists of unary functions
eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].
eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].
eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]

eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements
eg. head

[a -> b] is the type class of lists of unary functions
eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].
eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].
eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]
eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements
eg. head

[a -> b] is the type class of lists of unary functions
eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].
eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].
eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]
eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements

eg. head

[a -> b] is the type class of lists of unary functions
eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].
eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].
eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]
eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements
eg. head

[a -> b] is the type class of lists of unary functions
eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].
eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].
eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]
eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements
eg. head

[a -> b] is the type class of lists of unary functions

eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1



Haskell’s type system: a first glance

[a]: the type class of lists

Lists are homogeneous, and have arbitrary length

[Int] is the type of 32 bit integer lists; an instance of [a].
eg. [0,1,2,3,4]; [5,6,7]

String = [Char], strings are also instances of [a].
eg. "abc", same as [’a’,’b’,’c’],

[[a]] the type class of list of lists; a subclass of [a]
eg. [[],[0,1],[3]]; ["D. Trump","B. Obama","G. W. Bush"]

[a] -> a is the type class of functions from lists to elements
eg. head

[a -> b] is the type class of lists of unary functions
eg. even, odd, prime

P. Mekis (phil.elte.hu/mekis) Functional Programming for Logicians Session 1: 2019 February 11 7 / 1


