
Functional Programming for Logicians

Homework 6

Péter Mekis
Department of Logic, ELTE Budapest

Deadline: 2019 March 25 17:59 pm

Solve three of exercises 1-10, and three of exercises 11-20. Solving more is appreciated, but
not necessary.

1–10 The foldr function for lists is defined as:

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f y [] = y

foldr f y (x:xs) = foldr f (f x y) xs

Here’s how it works:

foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)

And a specific example:

foldr (^) 2 [3, 2, 1] == 3 ^ (2 ^ (1 ^ 2)) == 9

Use foldr to define the following functions. Do not use recursion or list comprehen-
sion.

sample myElem’ :: (Eq a) => a -> [a] -> Bool

Eg. myElem ’L’ "Haskell" == False

myElem :: (Eq a) => a -> [a] -> Bool

myElem z s = foldr (isit z) False s where

isit :: (Eq a) => a -> a -> Bool -> Bool

isit z x y = (x == z || y)

1. myReverse :: [a] -> [a]

Eg. myReverse "Haskell" == "lleksaH"

2. myLength :: [a] -> Int

Eg. myLength "Haskell" == 7

3. mySum :: (Num a) => [a] -> a

Eg. mySum [1,2,3] == 6

4. myProduct :: (Num a) => [a] -> a

Eg. myProduct [1,2,3] == 6

5. myMaximum :: (Ord a) => [a] -> a

Eg. myMaximum [False,True] == True

6. squareSum :: (Num a) => [a] -> a

Eg. squareSum [1,2,3] == 14

1

7. factorial :: (Num a) => a -> a

Eg. factorial 6 == 720

8. eraseItem :: (Eq a) => a -> [a] -> [a]

Eg. eraseItem ’a’ "Barack Obama" == "Brck Obm"

9. howMany :: (Eq a) => a -> [a] -> Int

Eg. howMany ’a’ "Barack Obama" == 4

10. parenthCheck :: String -> Bool

Eg. parenthCheck "((2+3)*((4+5)/7))" == True

11. In the session, we defined the HunBool type, deriving from a bunch of classes. Make
HunBool an instance of Ord, Enum, and Bounded by means of explicite instance dec-
larations, just as we did with Eq and Show.

12. Define a Weekday type with type constructors Monday . . . Sunday. Make it an instance
of the Show, Read, Eq, Ord, Enum, and Bounded classes.

13. In the session, we defined a length function for the Tree type. Define a
depth function that will find the length of the longest branch of a tree. Eg.
depth(montagueTree) = 3.

14. Define a function that checks whether a value of type a occurs as a label at a node
or a leaf of a tree of type Tree a. Eg. occurs "Bill" montagueTree == False.

15. Define a function that flips a tree horizontally; eg. treeFlip(montagueTree) ==

Node "S4" (Node "S5" (Leaf "Mary") (Leaf "love")) (Leaf "John")

16. Define a branches function that will return all the branches of a tree, from root to
leaf, as a list of lists. Eg. branches(montagueTree) ==

[["S4","John"],["S4","S5","love"],["S4","S5","Mary"]]

17. Redefine the show function for the Tree type so that it will show the structure of
the tree with indentation. Use the \nc character for line breaking, and call the print

function to make line breaks visible.

> print montagueTree

"S4"

- "John"

- "S5"

- - "love"

- - "Mary"

18. Modify the Tree type so that the type of the data at the nodes may be different
from the type of the data at the leaves; eg. there may be integers at the leaves, and
arithmetic operations at the nodes. Define a few trees in the new type.

19. Another approach to binary trees is that a tree is either empty (constructor: Empty,
no parameter), or it is a node with two branches. Define this version, and a few trees
in this type.

20. Find a way to define a tree type with arbitrarily many branches at each node. Define
a few trees in this type.

2

