Functional Programming for Logicians Homework 6

Péter Mekis
Department of Logic, ELTE Budapest

Deadline: 2019 March 25 17:59 pm

Solve three of exercises 1-10, and three of exercises 11-20. Solving more is appreciated, but not necessary.

1-10 The foldr function for lists is defined as:

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f y [] = y
foldr \(f\) y (x:xs) = foldr f (f x y) xs
```

Here's how it works:

```
foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)
```

And a specific example:
foldr (^) $2[3,2,1]==3$ ~ (2 ~ (1~2)) $==9$

Use foldr to define the following functions. Do not use recursion or list comprehension.

```
sample myElem' :: (Eq a) => a -> [a] -> Bool
```

 Eg. myElem 'L' "Haskell" == False
 myElem :: (Eq a) => a -> [a] -> Bool
 myElem z s = foldr (isit z) False s where
 isit :: (Eq a) => a -> a -> Bool -> Bool
 isit \(z \mathrm{x} y=(\mathrm{x}==\mathrm{z}| | \mathrm{y})\)
 1. myReverse :: [a] -> [a]

Eg. myReverse "Haskell" == "lleksaH"
2. myLength :: [a] -> Int

Eg. myLength "Haskell" == 7
3. mySum :: (Num a) => [a] -> a

Eg. mySum $[1,2,3]==6$
4. myProduct : : (Num a) => [a] -> a

Eg. myProduct $[1,2,3]==6$
5. myMaximum :: (Ord a) => [a] $->$ a

Eg. myMaximum [False,True] == True
6. squareSum :: (Num a) => [a] -> a

Eg. squareSum $[1,2,3]==14$

```
    7. factorial :: (Num a) => a -> a
    Eg. factorial 6 == 720
8. eraseItem :: (Eq a) => a -> [a] -> [a]
    Eg. eraseItem 'a' "Barack Obama" == "Brck Obm"
    9. howMany :: (Eq a) => a -> [a] -> Int
    Eg. howMany 'a' "Barack Obama" == 4
10. parenthCheck :: String -> Bool
    Eg. parenthCheck "((2+3)*((4+5)/7))" == True
```

11. In the session, we defined the HunBool type, deriving from a bunch of classes. Make HunBool an instance of Ord, Enum, and Bounded by means of explicite instance declarations, just as we did with Eq and Show.
12. Define a Weekday type with type constructors Monday ... Sunday. Make it an instance of the Show, Read, Eq, Ord, Enum, and Bounded classes.
13. In the session, we defined a length function for the Tree type. Define a depth function that will find the length of the longest branch of a tree. Eg. depth(montagueTree) $=3$.
14. Define a function that checks whether a value of type a occurs as a label at a node or a leaf of a tree of type Tree a. Eg. occurs "Bill" montagueTree == False.
15. Define a function that flips a tree horizontally; eg. treeFlip(montagueTree) $==$ Node "S4" (Node "S5" (Leaf "Mary") (Leaf "love")) (Leaf "John")
16. Define a branches function that will return all the branches of a tree, from root to leaf, as a list of lists. Eg. branches (montagueTree) == [["S4", "John"], ["S4", "S5", "love"], ["S4", "S5", "Mary"]]
17. Redefine the show function for the Tree type so that it will show the structure of the tree with indentation. Use the \backslash nc character for line breaking, and call the print function to make line breaks visible.
```
> print montagueTree
"S4"
- "John"
- "S5"
- - "love"
- - "Mary"
```

18. Modify the Tree type so that the type of the data at the nodes may be different from the type of the data at the leaves; eg. there may be integers at the leaves, and arithmetic operations at the nodes. Define a few trees in the new type.
19. Another approach to binary trees is that a tree is either empty (constructor: Empty, no parameter), or it is a node with two branches. Define this version, and a few trees in this type.
20. Find a way to define a tree type with arbitrarily many branches at each node. Define a few trees in this type.
