Functional Programming for Logicians
Homework 3

Péter Mekis
Department of Logic, ELTE Budapest

Deadline: 2019 March 4 17:59 pm

Define any five of the following functions in Haskell. Defining more than five is ap-
preciated, but not necessary. Some of the exercises are follow-ups to others; it may
be a good idea to choose them together.

Also, define three functions that aren’t in this list, based on your ideas, preferably
inspired by your main field of interest.

Use recursion in every function you define. Get ideas from the functions we defined
in this week’s session, or the sample given below.

Don’t use advanced tools like list comprehension, lambda abstraction, or importing
modules. If Haskell’s Prelude module has a built-in solution for an exercise, don’t use
it. New: You can use built-in functions from Haskell’s Prelude if they do
not solve the exercise itself, but make your solution easier to express. Feel
free to google these.

If the description of an exercise is ambiguous, be creative.

Declare the types of your functions. If you need non-integer numbers for your own
functions, use the 'Double’ type.

If you get stuck with the exercises, contact me or your fellow students. Don’t let
yourself get frustrated by difficulties, developing a recursive mindset takes time. If
you use code that was created by someone else, indicate it.

Make sure you submit a code that compiles in ghci. Annotation is appreciated.

The exercises range from the more elementary to the more advanced. Choose those
that are at your level. Have fun! :)

Sample Type Int -> [[Int]]

Description Returns the firss n rows of Pascal’s triangle. (Cf.
https://en.wikipedia.org/wiki/Pascal%27s_triangle)

Examples
> pascal 1
[[11]
pascal 5
(f11,01,11,01,2,11,(1,3,3,1],[1,4,6,4,1]]
Solution
pascal :: Int -> [[Int]]
pascal 1 = [[1]]
pascal n = prev ++ [pascal next (last prev)] where
prev = pascal (n-1)

pascal next xs = head xs : pascalnf xs where
pascalnext :: [Int] -> [Int]

pascalnf :: [Int] -> [Int]

pascal nf xs

| xs == [] =[]
| tail xs == [] = [head xs]
| otherwise = (head xs + head (tail xs)) : pascalnf (tail xs)

1. Type String -> Integer -> String

Description Drops the first k& characters of a string. (Special case of Haskell’s built-
in ‘drop’ function for strings.)
Examples
> drop’ 3 "Haskell"
"kell"
> drop’ 5 "Java"

nn
2. Type String -> Integer -> String

Description Takes the first k& characters of a string. (Special case of Haskell’s ‘take’
built-in function for strings.)

Examples
> take 3 "Haskell"
llHasll
> take 5 "Java"
llJaVall

3. Type Integer -> Integer

Description Integer division; special case of Haskell’s built-in ‘div’ function for the
Integer type.

Examples
> div’ 7 3
2
> div’ 0 2
0

4. Type String -> Char

Description Finds and returns the middle element of a string if there is one. Oth-
erwise it returns an exclamation mark.

10.

Example
> middlechar "abc"
J b)
> middlechar "abcd"

IR

Type String -> Char -> Char

Description Finds the character next to the first occurrence of a character in a
string. If there’s none, it returns an exclamation mark.

Example
> nextto "Gottlob Frege" ’o’
)t)
> nextto "abc" ’d’
PN)

Type String -> [String]
Description Slices up a string into substrings that consist of a single character

Example
> slice "Trump"
[IITII , Ilrll , l|u|l s llmll s ||pl|]

Type String -> Integer

Description Evaluates a simple arithmetic expression with two nonnegative decimal
numerals and basic operations +, -, and *.

Examples
> "3-7"
-4
> "TxE"
35

Type String -> (String, String)

Description Separates the vowels and the consonants of a word. Neglects any other
character.

Example
> separate "Donald Trump"
("oau", "DnldTrmp")

Type String -> String
Description Reduces a string so that it keeps only the first occurrences of every
character.

Example
> reducestring "aaargh"
llargh"
> reducestring "Gottlob Frege"
"Gotlb Freg"

Type String -> [String]

Description Creates a list with all substrings of a string. (The examples represent
two different approaches.)

Example
> substrings "abc"
[IIII’ Ilall’ Il'bll, "C“, Ilabll’ Ilbcll, llabcll]
> substrings’ "abc"
[Illl’ Ilall’ Ilabll, Ilabcll’ llbll’ "bC", llcll]

11.

12.

13.

14.

15.

16.

Type Integer -> Integer]

Description Returns the minimal amount of coins needed to pay a certan amount
in the Hungarian coin system. (Standard Hungarian coins are worth 5, 10, 20,
50, 100, and 200 Forints. Amounts are rounded to 5: 98 is rounded to 100, 97
to 95.)

Examples
> 198
1
> 572
5

Type String -> [String]
Description Splits a string at the occurrences of a given character.

Example
> split "my body is walking in space" ’ ’
[Ilmyll s Ilbodyll , llisll , "Walking" , llinll , n SpaCe"]
> split "ab.c.de.fgh"
[Ilabll s IICII , Ildell , Ilfghll]

Type [(Integer, Char)] -> String

Description Creates a string from a list of ordered pairs where the second member
is a character and the first member is the number of its consecutive occurrences.

Example
> expand [(1,’a’),(2,°b),(3,’c’)]
"abbccc"

Type Integer -> [[Bool]]

Description Creates the input rows (truth possibilities) of a truth table for n ele-
mentary propositions.

Example
> truth_poss 2
[[True, Truel, [True, False], [False, True], [False, False]l]
> truth_poss 3
[[True, True, Truel], [True, True, False],
[True, False, Truel], [True, False, False],
[False, True, True], [False, True, False],
[False, False, True], [False, False, False]l]

Type String -> Integer -> [String]

Description Lists all the words of a given length over an alphabet in alphabetical
order.

Example
> wordlist "O1" 2
[IIOOII , "01" s Illoll s Illlll]
> wordlist "abc" 3
[naaan s "aab" s "aac" s "aba" R "abb" R "abe" , "aca" s "acb" R "acc" R
llbaall Ilbabll |IbaC|l lIbball llbbbll Ilbbcll |Ibcall lIbell lleC"

"Caa" s "C& n s "CaC" , n Cba" s IICbbll s IICbCIl s "CCa" , IICCbll s IICCCll]

Type String -> String -> Bool

Description Tells whether two strings use the same characters (number of occur-
rences may differ).

17.

18.

19.

20.

Examples
> same_chars "aabbccdd" "daccabacca"
True
> same_chars "aabbccdd" "daccamacca
False

Type String -> [String]

Description Splits a string at the occurrences of a given character, if they are not
embedded in parentheses.

Example
> split "a + (b + c) + d" '+’
[Ilall , n (b+C) n s lld]
> split "wl(Gwlw) | Go)) [w"
Cw", (G lw) [)", "wl

Type String -> Integer

Description Evaluates a complex arithmetic expression with nonnegative decimal
numerals and basic operations +, -, and *, fully parenthesized.

Examples
> "(((3-T)*4)*2)"
-32
> "((3-(Tx4))*2)"
-50

Type [Int] -> [Int]
Description Sorts a list of integers using the bubble sort algorithm. For further
details, cf. https://en.wikipedia.org/wiki/Bubble_sort

Example
> bubblesort [3,2,4,1]
[1s2:3:4]

Type [Int] -> [Int]

Description Sorts a list of integers using the quicksort algorithm. For further details,
cf. https://en.wikipedia.org/wiki/Quicksort

Example
> quicksort [3,2,4,1]
[1,2,3,4]

