
Functional Programming for Logicians

Homework 3

Péter Mekis
Department of Logic, ELTE Budapest

Deadline: 2019 March 4 17:59 pm

• Define any five of the following functions in Haskell. Defining more than five is ap-
preciated, but not necessary. Some of the exercises are follow-ups to others; it may
be a good idea to choose them together.

• Also, define three functions that aren’t in this list, based on your ideas, preferably
inspired by your main field of interest.

• Use recursion in every function you define. Get ideas from the functions we defined
in this week’s session, or the sample given below.

• Don’t use advanced tools like list comprehension, lambda abstraction, or importing
modules. If Haskell’s Prelude module has a built-in solution for an exercise, don’t use
it. New: You can use built-in functions from Haskell’s Prelude if they do
not solve the exercise itself, but make your solution easier to express. Feel
free to google these.

• If the description of an exercise is ambiguous, be creative.

• Declare the types of your functions. If you need non-integer numbers for your own
functions, use the ’Double’ type.

• If you get stuck with the exercises, contact me or your fellow students. Don’t let
yourself get frustrated by difficulties, developing a recursive mindset takes time. If
you use code that was created by someone else, indicate it.

• Make sure you submit a code that compiles in ghci. Annotation is appreciated.

• The exercises range from the more elementary to the more advanced. Choose those
that are at your level. Have fun! :)

1

Sample Type Int -> [[Int]]

Description Returns the first n rows of Pascal’s triangle. (Cf.
https://en.wikipedia.org/wiki/Pascal%27s triangle)

Examples
> pascal 1

[[1]]

pascal 5

[[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]

Solution
pascal :: Int -> [[Int]]

pascal 1 = [[1]]

pascal n = prev ++ [pascal next (last prev)] where

prev = pascal (n-1)

pascal next xs = head xs : pascal nf xs where

pascal next :: [Int] -> [Int]

pascal nf :: [Int] -> [Int]

pascal nf xs

| xs == [] = []

| tail xs == [] = [head xs]

| otherwise = (head xs + head (tail xs)) : pascal nf (tail xs)

1. Type String -> Integer -> String

Description Drops the first k characters of a string. (Special case of Haskell’s built-
in ‘drop’ function for strings.)

Examples
> drop’ 3 "Haskell"

"kell"

> drop’ 5 "Java"

""

2. Type String -> Integer -> String

Description Takes the first k characters of a string. (Special case of Haskell’s ‘take’
built-in function for strings.)

Examples
> take 3 "Haskell"

"Has"

> take 5 "Java"

"Java"

3. Type Integer -> Integer

Description Integer division; special case of Haskell’s built-in ‘div’ function for the
Integer type.

Examples
> div’ 7 3

2

> div’ 0 2

0

4. Type String -> Char

Description Finds and returns the middle element of a string if there is one. Oth-
erwise it returns an exclamation mark.

2

Example
> middlechar "abc"

’b’

> middlechar "abcd"

’!’

5. Type String -> Char -> Char

Description Finds the character next to the first occurrence of a character in a
string. If there’s none, it returns an exclamation mark.

Example
> nextto "Gottlob Frege" ’o’

’t’

> nextto "abc" ’d’

’!’

6. Type String -> [String]

Description Slices up a string into substrings that consist of a single character

Example
> slice "Trump"

["T","r","u","m","p"]

7. Type String -> Integer

Description Evaluates a simple arithmetic expression with two nonnegative decimal
numerals and basic operations +, -, and *.

Examples
> "3-7"

-4

> "7*5"

35

8. Type String -> (String, String)

Description Separates the vowels and the consonants of a word. Neglects any other
character.

Example
> separate "Donald Trump"

("oau","DnldTrmp")

9. Type String -> String

Description Reduces a string so that it keeps only the first occurrences of every
character.

Example
> reducestring "aaargh"

"argh"

> reducestring "Gottlob Frege"

"Gotlb Freg"

10. Type String -> [String]

Description Creates a list with all substrings of a string. (The examples represent
two different approaches.)

Example
> substrings "abc"

["", "a", "b", "c", "ab", "bc", "abc"]

> substrings’ "abc"

["", "a", "ab", "abc", "b", "bc", "c"]

3

11. Type Integer -> Integer]

Description Returns the minimal amount of coins needed to pay a certan amount
in the Hungarian coin system. (Standard Hungarian coins are worth 5, 10, 20,
50, 100, and 200 Forints. Amounts are rounded to 5: 98 is rounded to 100, 97
to 95.)

Examples
> 198

1

> 572

5

12. Type String -> [String]

Description Splits a string at the occurrences of a given character.

Example
> split "my body is walking in space" ’ ’

["my","body","is","walking","in","space"]

> split "ab.c.de.fgh"

["ab","c","de","fgh"]

13. Type [(Integer, Char)] -> String

Description Creates a string from a list of ordered pairs where the second member
is a character and the first member is the number of its consecutive occurrences.

Example
> expand [(1,’a’),(2,’b’),(3,’c’)]

"abbccc"

14. Type Integer -> [[Bool]]

Description Creates the input rows (truth possibilities) of a truth table for n ele-
mentary propositions.

Example
> truth poss 2

[[True, True], [True, False], [False, True], [False, False]]

> truth poss 3

[[True, True, True], [True, True, False],

[True, False, True], [True, False, False],

[False, True, True], [False, True, False],

[False, False, True], [False, False, False]]

15. Type String -> Integer -> [String]

Description Lists all the words of a given length over an alphabet in alphabetical
order.

Example
> wordlist "01" 2

["00","01","10","11"]

> wordlist "abc" 3

["aaa","aab","aac","aba","abb","abc","aca","acb","acc",

"baa","bab","bac","bba","bbb","bbc","bca","bcb","bcc",

"caa","cab","cac","cba","cbb","cbc","cca","ccb","ccc"]

16. Type String -> String -> Bool

Description Tells whether two strings use the same characters (number of occur-
rences may differ).

4

Examples
> same chars "aabbccdd" "daccabacca"

True

> same chars "aabbccdd" "daccamacca "

False

17. Type String -> [String]

Description Splits a string at the occurrences of a given character, if they are not
embedded in parentheses.

Example
> split "a + (b + c) + d" ’+’

["a","(b+c)","d]

> split "w|((w|w)|(w))|w"

["w","((w|w)|(w))","w]

18. Type String -> Integer

Description Evaluates a complex arithmetic expression with nonnegative decimal
numerals and basic operations +, -, and *, fully parenthesized.

Examples
> "(((3-7)*4)*2)"

-32

> "((3-(7*4))*2)"

-50

19. Type [Int] -> [Int]

Description Sorts a list of integers using the bubble sort algorithm. For further
details, cf. https://en.wikipedia.org/wiki/Bubble sort

Example
> bubblesort [3,2,4,1]

[1,2,3,4]

20. Type [Int] -> [Int]

Description Sorts a list of integers using the quicksort algorithm. For further details,
cf. https://en.wikipedia.org/wiki/Quicksort

Example
> quicksort [3,2,4,1]

[1,2,3,4]

5

