
Functional Programming for Logicians

Homework 2

Péter Mekis
Department of Logic, ELTE Budapest

Deadline: 2019 February 25 17:59 pm

• Define any five of the following functions in Haskell. Defining more than five is ap-
preciated, but not necessary. Some of the exercises are follow-ups to others; it may
be a good idea to choose them together.

• Also, define three functions that aren’t in this list, based on your ideas, preferably
inspired by your main field of interest.

• Use recursion in every function you define. Get ideas from the functions we defined
in this week’s session, or the sample given below.

• Don’t use advanced tools like list comprehension, lambda abstraction, or importing
modules. If Haskell’s Prelude module has a built-in solution for an exercise, don’t use
it. If the description is ambiguous, be creative.

• Declare the types of your functions. If you need non-integer numbers for your own
functions, use the ’Double’ type.

• If you get stuck with the exercises, contact me or your fellow students. Don’t let
yourself get frustrated by difficulties, developing a recursive mindset takes time. If
you use code that was created by someone else, indicate it.

• Make sure you submit a code that compiles in ghci. Annotation is appreciated.

• The exercises range from the more elementary to the more advanced. Choose those
that are at your level. Have fun! :)

1



Sample Type Char -> String -> Bool

Description Tells whether a given character occurs in a string.

Examples
> occurs ’s’ "Budapest"

True

> occurs ’s’ "Vienna"

False

Solution

-- version 1: pattern matching

occurs :: Char -> String -> Bool

occurs c "" = False

occurs c (d:s) = if c == d then True else occurs c s

-- version 2: pattern matching

occurs’ :: Char -> String -> Bool

occurs’ c s

| s == "" = False

| head s == c = True

| otherwise = occurs’ c (tail s)

1. Type String -> Char

Description Returns the last character of a string.

Examples
> my last "Haskell"

’l’

> my last "@"

’@’

2. Type String -> Integer

Description Calculates the length of a string.

Examples
> my length "Gottlob Frege"

13

> my length ""

0

3. Type Char -> String -> String

Description Counts the occurrences of a character in a string.

Examples
> count occur ’o’ "Scooby-Doo"

4

> count occur ’0’ "3.14159265358979323846"

0

4. Type Char -> Integer -> String

Description Repeats a character as many times as given.

Examples
> repeat ’s’ 3

"sss"

> repeat ’a’ 0

""

2



5. Type String -> Integer -> Char

Description Returns the nth character of a string; and ’ !’ if i is too large. Start
indexing from zero.

Examples
> nth char 0 "Hello world"

’H’

> nth char 7 "Hello world"

’o’

> nth char 100 "Hello world"

’!’

6. Type String -> Bool

Description Checks whether a string is a valid binary numeral.

Examples
> is bin "10"

True

> is bin "20"

False

> is bin "01"

False

7. Type String -> String

Description Reverses a string.

Examples
> reverse "Gottlob Frege"

"egerF bolttoG"

> reverse "ahha"

"ahha"

8. Type String -> Bool

Description Checks whether a string is a strong palindrome, ie. reads the same
backward as forward.

Examples
> is palindr "kayak"

True

> is palindr "(#̂ ̂#)"
False

9. Type Integer -> Integer

Description Returns the nth element of the Fibonacci sequence. This sequence be-
gins with F0 = 0 and F1 = 1; and for larger indices, Fn = Fn−2 + Fn−1:
https://en.wikipedia.org/wiki/Fibonacci number

Examples
> fibonacci 10

55

> fibonacci 30

832040

10. Type String -> Bool

Description Checks whether a string of ’(’s and ’)’s is correctly parenthesised.

3



Examples
> well parenth "(()(()()))"

True

> begins "(()(()())))"

False

11. Type String -> String -> Bool

Description Checks whether the first string begins with the second.

Examples
> begins "Gottlob Frege" "Gott"

True

> begins "Heidegger" "Heil"

False

12. Type Integer -> Integer -> Bool

Description Checks whether an integer divides another integer.

Examples
> divides 3 2019

True

> divides 2 2019

False

13. Type Integer -> Integer

Description Sums the digits of an integer.

Examples
> digitsum 2019

12

> digitsum 1999

28

14. Type Integer -> Integer -> Int

Description Returns the greatest common divisor of two integers. (If you get stuck:
https://en.wikipedia.org/wiki/Euclidean algorithm.)

Examples
> gcd 102 74

2

> gcd 1024 768

256

15. Type String -> String -> Bool

Description Checks whether the first string is part of the second.

Examples
> begins "Wit" "Ludwig Wittgenstein"

True

> begins "True" "Donald Trump"

False

16. Type String -> String

Description Returns the successor of a binary numeral.

Examples
> bsucc "0"

"1"

> bsucc "111"

"1000"

4



17. Type String -> String -> String

Description Returns the the sum of two binaries.

Examples
> bplus "1" "1"

"10"

> bplus "100" "101"

"1001"

18. Type Integer -> Bool

Description Checks whether the input is a prime.

Examples
> is prime 2017

True

> is prime 2019

False

19. Type Integer -> Integer

Description Returns the next prime.

Examples
> next prime 2

3

> next prime 2019

2027

20. Type Integer -> [Integer]

Description Returns the list of the first n primes.

Examples
> nprimes 2

[2,3]

> nprimes 12

[2,3,5,7,11,13,17,19,23,29,31,37]

5


