
Functional Programming for Logicians

Péter Mekis
Department of Logic, ELTE Budapest

Deadline: 2019 February 18 17:59 pm

• Define any three of the following functions in Haskell. Defining more than three is
appreciated, but not necessary. Some of the exercises are follow-ups to others; it may
be a good idea to choose them together.

• Also, define three functions that aren’t in this list, based on your ideas, preferably
connected to your main field of interest.

• Get ideas from the functions we defined in the first session. Don’t use advanced tools
like list comprehension, lambda abstraction, or importing modules. If Haskell has a
built-in solution for an exercise, don’t use it. If you need syntax that wasn’t covered
in the session, google it. If the description doesn’t cover all cases, be creative!

• If you use code that was created by someone else, indicate it.

• Make sure you submit a code that compiles in ghci. Annotation is appreciated.

• The exercises range from the more elementary to the more advanced. Choose those
that are at your level. Have fun! :)

1. Type Int -> Int

Description Calculates the age of a person based on their birth year.

Examples
> age 2011

8

> age 1923

96

2. Type Int -> (Int -> Int)

Description Calculates the square sum of two integers.

Examples
> sqsum 5 7

74

> sqsum (-1) 1

2

3. Type Int -> Int

Description Calculates the absolute value of its input.

Examples
> abs’ 17

17

> abs’ (-17)

17

1



4. Type Bool -> Bool

Description It negates a truth value.

Examples
> not’ True

False

> not’ False

True

5. Type Int -> (Bool -> Int)

Description Calculates the age of a person, taking into account whether they have
already had their birthday this year.

Examples
> age’ 2011 True

8

> age’ 1923 False

95

6. Type Bool -> (Bool -> Bool)

Description Implication (conditional): it returns False iff the first argument is true,
and the second is false.

Examples
> age’ 2011 True

8

> age’ 1923 False

95

7. Type Int -> String

Description Returns "negative" if the input is negative; "positive" if it’s posi-
tive; and "zero" otherwise.

Examples
> sign 17

"positive"

> sign (-17)

"negative"

8. Type Int -> String

Description If the input is a valid grade in the Hungarian academic system (5, 4,
3, 2, or 1), the function returns it as a term ("excellent", "good", "fair",
"sufficient", "fail"). Otherwise it returns an error message.

Examples
> grade 4

"good"

> grade 7

"not a grade!"

9. Type Int -> (Int -> (Int -> Bool))

Description Checks if three integers form a Pythagorean triple. (Cf.
https://en.wikipedia.org/wiki/Pythagorean triple)

Examples
> pythtriple 5 12 13

True

> pythtriple 6 12 13

False

2



10. Type Int -> (Int -> (Int -> Int))

Description Returns the maximum of three integers.

Examples
> max3 5 7 3

7

> max3 (-5) (-7) (-3)

-3

3


