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Introduction

The general topic of this thesis is modal logic. Modal logic has many appli-

cations in different fields of research such as, but not limited to, philosophy,

mathematics, linguistics, computer science, law, etc. Let us start by stat-

ing that modal logic is not a logic, in the sense of it being a single entity,

but rather it is a large family of logics. For this reason we often talk about

(modal) logics, in plural. We only study propositional modal languages. The

propositional nature of the considered logics means that their computational

complexity is somtimes fairly low, which is desirable. However they are also

very expressive. In fact it has been shown that propositional modal logics can

express not only certain first-order properties, but also some that are strictly

second-order. Modal correspondence theory provides tools to study these

links between modal and first- or second-order languages. It turns out that

certain fragments of first- and second-order logic can be modally expressed.

Coupled with their propositional nature, and the flexibility with which modal

operators can be defined, this often leads to sought after positive decidability

results.

These facts are especially interesting since there are many completeness

results for modal logics. Completeness and soundness are not simply desired

properties of logics, they are often the very reason that makes such systems

usable and useful. It is hard overestimate the importance of completeness

results for a logic. The introduction by Kripke in the 1950s, of frame-based
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semantics, paved the way for the first competeness results for many modal

logics (that were only characterized syntactically for many of them, at that

time). However it was not until the 1970s that the first important incom-

pleteness results arose, with papers by Thomason [21] and Fine [12], both

published in 1974 albeit with independently obtained results.

After introducing basic definitions and tools regarding modal languages

and logic in the first chapter, we turn our discussion to Kripke semantics

(the most common semantics used for propositional modal logics), focusing

mostly on completeness issues. We will mostly discuss normal modal logics,

a family of systems respecting certain syntactic closure conditions. However,

we don’t limit our discussion to single modal languages (as is sometimes the

case), and give our results for modal languages of arbitrary similarity type.

After giving a general method for compeleteness (via canonical models) for

Kripke semantics, we prove some of its inherent limitations. Namely, we will

show that not every normal modal logic is complete in Kripke semantics. We

do so by giving a full proof of the incompleteness of KtThoM.

In the last section of this thesis, we try to heal this failure of completeness

by introducing algebraic semantics. This is the most technical part of the

thesis, and culminates with a proof of the Jónsson-Tarski Theorem. As we

will show, with this theorem, we obtain a general completeness result for any

normal modal logic (of arbitrary similarity type).
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Chapter 1

Introduction: Modal logic

We recall some basic definitions1.

1.1 Modal languages

This section introduces modal languages and discusses a few examples.

Definition 1.1 (Modal languages). We let Φ = {p0, p1, ...} be a countably

infinite set of propositional letters. By a modal similarity type we mean a set

τ = {40,41,42, ...} whose members we call modal operators, each of which

has a fixed arity. As primitive logical symbols we use ⊥,¬,∨. We denote a

modal language by ML(τ,Φ), or simply by its similarity type τ , since the

modalities are what essentially distinguish (propositional) modal languages

from each other.

The set Fmlτ of τ -formulas of a language ML(τ,Φ) is the smallest set

such that: p ∈ Fmlτ (for all p ∈ Φ), ⊥ ∈ Fmlτ , if ϕ ∈ Fmlτ then ¬ϕ ∈
Fmlτ , if ϕ, ψ ∈ Fmlτ then ϕ ∨ ψ ∈ Fmlτ , and if ϕ1, ..., ϕn ∈ Fmlτ and

4 ∈ τ then 4(ϕ1, ..., ϕn) ∈ Fmlτ (for every n-ary 4 ∈ τ).

1The basic definitions are (mostly) standard, and we try to stick with some standard

notation. The standards we stick most closely with are [9], [8], and [10].
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We can write the above inductive rule defining Fmlτ more concisely:

ϕ ::= p ∈ Φ | ⊥ | ¬ϕ | ϕ ∨ ψ | 4(ϕ1, ..., ϕn)4∈τ

a
Each modal operator has a dual defined as 4(ϕ0, ϕ1, ..., ϕn) := ¬4(¬ϕ0,

¬ϕ1, ...,¬ϕn).

We also use the usual propositional shorthands for conjunction, impli-

cation, bi-conditional, and verum. Respectively ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ),

ϕ→ ψ := ¬ϕ ∨ ψ, ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ), and > := ¬⊥.

Example 1.2 (Basic modal language). We call basic modal language the

modal language whose similarity type τ = { �} is a singleton containing a

unary modal operator. We denote this modality as is customary with the

symbol � and call it the diamond operator. Its dual, the box operator �

is defined as �ϕ := ¬ �¬ϕ. By basic modal similarity type we mean the

similarity type of the basic modal language. a
In general, unary 4 are denoted by �. Duals of unary triangle, unary 4

are denoted by � (as in the basic modal language).

The basic modal language is the most common modal language, and

there are many ways one can understand �. For instance, it has been widely

understood as an alethic modality2, in which case �ϕ is read as “it is possible

that ϕ”. Under that reading �’s dual ¬ �¬ is then understood as “it is not

possible that not”, which is the same as the more succint “it is necessary

that”. The same way we use the word “necessary” in English to mean that

“it is not possible that (something) is not the case”, we defined � as a

abbreviation to mean ¬ �¬. Therefore �ϕ is read as “it is necessary that ϕ”

under the alethic understanding.

There are many other ways the basic modal operators � and � have been

understood. We can note that even though we only have � as a primitive

2See e.g. [3]
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operator in the basic modal language, we can always give a reading for a �

operator, since it can always be defined from �. In some modal logics, it is

sometimes easier to use one of � or � more often (in axioms for example),

because it is easier to read one or the other given the intended semantics of

said logic.

In provability logic3 for instance, �ϕ is read as “it is provable that ϕ”. We

don’t have a nice shorthand in English with the meaning of “not provable

that not ...”, which is how we would read � in the context of provability

logic. We can still have � as our primitive operator in such a case, and only

give a way to read �. In the end, it doesn’t matter whether we use � or �

(or both) as our primitive modality for the basic modal language since they

are interdefinable. In any case we get � = ¬ �¬ and � = ¬�¬.4 In the basic

modal language, eventhough it might be the case that only one modality is

used as a primitive, its dual is always available to make our life easier if we

wish so (and it is often the case).

Some of the other common ways the basic modalities (ie. the modalities

of the basic modal language; ie. � or �) have been read include: “it is

permitted to” for � in the context of deontic logic5 (its dual “not permitted

not to” is what we mean by “obligated to” in English, therefore the deontic

reading of �ϕ is “it is obligatory to ϕ”); in epistemic logic �ϕ can be read

as “it is known that ϕ”.

Of course the reading of � is not limited to any of the above mentioned

cases. In fact modalities don’t need to have an intuitive way to read them in

3See e.g. [6]
4This latter equality is justified striaghtforwardly, although we haven’t yet introduced

the (very basic) tools used to make such a claim, the main idea is our languages will all

contain the tautology ϕ ↔ ¬¬ϕ. Thus starting from the definition of � = ¬ �¬ we get

¬� = ¬¬ �¬, whence we eliminate the double negation ¬� = �¬, then ¬�¬ = �¬¬,

and finally ¬�¬ = �.
5See e.g. [13]
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English. The meaning is given mathematically by the semantics we choose.

The semantics for some language often models some aspect of reality (maybe

it was chosen for that reason, in which case we can talk of intended meaning),

but it is not necessary.

We will see different examples of specific languages later on. For instance,

we will introduce temporal languages when we discuss incompleteness results

for Kripke semantics.

1.2 Semantics

We can interpret modal languages in relational structures. This kind of

semantics is due to Saul Kripke and called Kripke semantics6. It is quite

nice since it is fairly intuitive, allows for model theoretic explorations, and,

as we will see is complete in many cases (although there are some limitations).

In Kripke semantics, modal languages are interpreted on frames.

A relational structure is a set W with some relations R on it. We always

take W to be non empty. We denote such a relational structure by (W,Ri)i∈I

and call it a frame.

Definition 1.3 (Kripke frames). Given a modal similarity type τ , a τ -

frame F is a tuple containing a non empty set W and for each n-ary 4 ∈ τ ,

an (n+ 1)-ary relation R4 on W , denoted F = (W,R4)4∈τ . a
The elements of W are called points, states, worlds, nodes , but not ex-

clusively. We can think of the relations R4 as telling us which points see

6Some logicians (such as Blackburn, Rijke, and Venema [8] for example) refer to Kripke

semantics as relational semantics, for obvious reasons since languages are interpreted in

relational structures. Other logicians (such as Chagrov and Zakharyaschev [10]) refer to

another kind of semantics when they talk about relational semantics, namely general frame

semantics (an intermediary semantics between Kripke semantics and algebraic semantics).

To avoid confusion, we will not use the expression ‘relational semantics’, and instead talk

about Kripke semantics, and general frame semantics.
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which, or which points are accessible from which. For that reason, they are

often called accessibility relations. For example, let’s assume we have a frame

(W,R), such that W = {w0, w1, w2} and R is the binary relation R = {(w0,

w0), (w1, w0)}. Then we say that w0 sees itself, and can access itself. In this

frame, w0 is also accessible by w1. We say that w1 sees w0 or that w0 is

seen by w1. We can easily represent frames with graphs, and it is sometimes

useful to visualize them in such a way. The graph of the above mentioned

frame looks like this:

w0 w1 w2

The idea behind interpreting modal languages on frames is that we say

in which worlds, each p ∈ Φ is true, with the help of an assignment function.

Then, we will be able to inductively define truth for all the formulas of the

language.

Definition 1.4 (Kripke models). Given a τ -frame F, a Kripke τ -model

is the tuple M = (F, V ) where V : Φ −→ ℘(W ) is a function from the set

of propositional letters Φ to the power set of W . The idea is to associate

to each propositional letter a collection of states from W . Thus, a Kripke

model consists of:

(i) A non empty set W

(ii) A set of relations on W , such that for each n-ary 4 ∈ τ there is a

(n+ 1)-ary relation R4

(iii) A function V : Φ −→ ℘(W )

a
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The function V is called a valuation (or assignment). It decides in which

points w ∈ W each p ∈ Φ is true in the model. The subset V (p) of W is the

set of points where p is true in the model. If we have w ∈ V (p), then the

atomic fact p is true at w. We are now ready to define the notion of truth

for complex formulas.

Definition 1.5 (Satisfaction). The following inductive definition tells us

when a τ -formula ϕ is true (or satisfied) at a point w in a model M:

M, w  p iff w ∈ V (p) (1.1)

M, w  ⊥ is never the case (1.2)

M, w  ¬ϕ iff it’s not the case that M, w  ϕ (1.3)

M, w  ϕ ∨ ψ iff M, w  ϕ or M, w  ψ (1.4)

M, w  4(ϕ1, ..., ϕn) iff for some v1, ..., vn ∈ W such that R4wv1...vn,

we have M, vi  ϕi for all i such that 1 ≤ i ≤ n

(1.5)

A formula ϕ is globally true if it is satisfied in every state of a model (ie.

if we have M, w  ϕ for all w ∈ W of a model M), we write M  ϕ. We say

that ϕ is satisfiable in a model when ϕ is satisfied in at least one point of the

model (ie. if ∃x ∈ W such that M, x  ϕ). A formula ϕ is refutable in some

model if its negation is satisfiable. When ϕ is not true at w in a model M,

we write M, w 1 ϕ, and say that ϕ is false at w. a
(1.1) corresponds to our definition of models: an atomic formula p is true

in a world when that world is in the valuation of p. The cases (1.2), (1.3)

and (1.4) are the standard propositional cases, giving the usual meaning to

⊥,¬,∨. It follows that the meaning of the abbreviations →,∧,> are also

the usual propositional ones. ⊥ is the constant falsum meaning “false”, and

is never satisfied anywhere (ie. at any point) in a model. If a ¬ϕ is true (in

a world), then it is not the case that ϕ is true (in that world). Whenever we
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have that ϕ∨ψ holds in some world, then either ϕ holds in that world, or ψ

holds in that world, or both.

The last case (1.5) is the most interesting for us, since it is the one that

deals specifically with modalities and the reason models are based on frames.

When is a formula containing an n-ary modality true in a world ? If the

formula is of the form 4(ϕ1, ..., ϕn), then for it to be satisfied at some world

w of W , there must be an (n+ 1)-ary relation on W such that w is the first

member of the relation, and at each world vi in the (i+ 1)-th position of the

relation, the formula ϕi must be true there (for 0 < i ≤ n).

According to the satisfaction definition we get:

M, w  4(ϕ1, ..., ϕn)

iff (1.6)

∀v1, ..., vn ∈ W such that Rwv1...vn, we have M, vi  ϕi ∀i(1 ≤ i ≤ n)

Proof. We verify (1.6). M, w  4(ϕ1, ..., ϕn) iff M, w  ¬4(¬ϕ1, ...,¬ϕn),

by the definition of 4. Then for any (n+1)-ary relation where w is in the first

position such as Rwv1...vn, we have that it is not the case that M, vi  ¬ϕi
(for all i such that 1 ≤ i ≤ n). So, if we have Rwv1...vn, then it’s not the case

that M, vi 1 ϕi, which means that each ϕi must be true at each vi. Thus

if we have M, w  4(ϕ1, ..., ϕn) and some vi’s such that Rwv1...vn, then we

have M, vi  ϕi for each i such that 1 ≤ i ≤ n, since it cannot be the case

that ϕi is false at vi.

A set of formulas Σ is true at a state w when all its members are satisfied

in w: M, w  Σ iff ∀ϕ ∈ Σ, M, w  ϕ. Similarly, we have that a set of

formulas Σ is globally true in a model M iff ∀ϕ ∈ Σ,∀w ∈ W , M, w  ϕ,

which we write M  Σ.

Example 1.6. As an example let us assume that we have a binary modality

4 ∈ τ and a τ -model M = (W = {w, v1, v2}, R = {(w, v1, v2)}, V ) such that
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V (p) = {v1} and V (q) = {v2}. We want to check if the formula 4(p, q) is

true at w, ie. if M, w  4(p, q). According to valuation V and equivalence

(1.1), we have that M, v1  p and M, v2  q. For 4(p, q) to be true at w,

our model needs to have a ternary relation where w is in the first place, and

some vi ∈ V (p) and vj ∈ V (q) in the second and third place of the relation,

respectively. We have only one relation Rwv1v2 in our model, so we need

to check if v1 ∈ V (p) and v2 ∈ V (q). Since this is the case, we have that

M, w  4(p, q). We can represent this model as a diagram, like so7:

w

4(p, q)
v1

p

v2

q

Rwv1v2

a
Since the truth of formulas is evaluated on elements of W , we can extend

V to tell us at which points of W , each formula ϕ ∈ Fmlτ of the language is

true. We define the function Ṽ : Fmlτ −→ ℘(W ) such that:

Ṽ (p) = V (p) (1.7)

Ṽ (⊥) = ∅ (1.8)

Ṽ (¬ϕ) = W − Ṽ (ϕ) (1.9)

Ṽ (ϕ ∨ ψ) = Ṽ (ϕ) ∪ Ṽ (ψ) (1.10)

Ṽ (4(ϕ1, ..., ϕn)) = {w ∈ W : ∃v1, ..., vn ∈ W such that Rwv1...vn

and vi ∈ Ṽ (ϕi) for all i ≤ n} (1.11)

We get that Ṽ (ϕ) = {w ∈ W : M, w  ϕ}, for all ϕ ∈ Fmlτ .
7We use dashed arrows to represent n-ary relations when n > 2
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Proposition 1.7. Given a model M = (F, V ) we have that

M, w  ϕ iff w ∈ Ṽ (ϕ)

Proof. We prove by induction on the complexity of ϕ. (⇒) We first check

the left to right direction. If ϕ is a propositional letter p, it follows directly

from the satisfaction definition since we have M, w  p iff w ∈ V (p). By

equality (1.7) we get w ∈ Ṽ (p). For ⊥: because it is never satisfied at any

world according to the satisfaction definition, then the set of worlds where

it is true is empty, hence there is no w such that w ∈ Ṽ (⊥), thus Ṽ (⊥) = ∅.
If ϕ is of the form ¬ψ, then M, w  ¬ψ means that it’s not the case that

M, w  ψ according to our satisfaction definition (ie. M, w 1 ψ). Thus

by the induction hypothesis we get that w 6∈ Ṽ (ψ). But then we get that

w ∈ W − Ṽ (ψ), which is what we wanted. If ϕ is a disjunct of the form

ψ ∨ χ, we have that M, w  ψ ∨ χ iff M, w  ψ or M, w  χ, according to

the satisfaction definition. By the inductive hypothesis we get that w ∈ Ṽ (ψ)

or w ∈ Ṽ (χ). Hence we get that w ∈ Ṽ (ψ) ∪ Ṽ (χ). If ϕ is an n-ary modal

formula of the form 4(ϕ1, ..., ϕn) such that M, w  4(ϕ1, ..., ϕn), then we

have some v1, ..., vn ∈ W and Rwv1...vn such that for each i ≤ n, M, vi  ϕi

(according to the satisfaction definition). By the induction hypothesis, for

all i ≤ n we have vi ∈ Ṽ (ϕi). Then w ∈ {x ∈ W : ∃v1, ..., vn ∈ W,

Rxv1...vn and vi ∈ Ṽ (ϕi) for all i ≤ n}. Thus by the equality (1.11) of the

definition of Ṽ , w ∈ Ṽ (4(ϕ1, ..., ϕn)).

(⇐) We check the right to left direction. If ϕ is a propositional letter p,

then w ∈ Ṽ (p) iff w ∈ V (p) (by the definition of Ṽ ) iff M, w  p (by the

satisfaction definition). If ϕ is ⊥, then w ∈ Ṽ (⊥) iff w ∈ ∅. But this can

never be the case, thus there is no w ∈ W such that M, w  ⊥. If ϕ is

of the form ¬ψ, then w ∈ Ṽ (¬ψ) iff w ∈ W − Ṽ (ψ), thus w 6∈ Ṽ (ψ). By

the induction hypothesis we get that M, w 1 ψ. Then, by the satisfaction

definition we have M, w  ¬ψ. If ϕ is of the form ψ ∨ χ, then w ∈ Ṽ (ψ ∨ χ)
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iff w ∈ Ṽ (ψ) ∪ Ṽ (χ). Then we have that w ∈ Ṽ (ψ) or w ∈ Ṽ (χ) (or

both). Thus by the induction hypothesis: M, w  ψ or M, w  χ. By the

satisfaction definition we get M, w  ψ∨χ. If ϕ is of the form 4(ϕ1, ..., ϕn),

then w ∈ Ṽ (4(ϕ1, ..., ϕn)) iff for some v1, ..., vn ∈ W we have Rwv1...vn and

vi ∈ Ṽ (ϕi) for all i ≤ n. By the induction hypothesis we have that M, vi  ϕi

(for i ≤ n). Thus by the satisfaction definition we have M, w  4(ϕ1, ...,

ϕn).

Definition 1.8 (Validity). A formula ϕ is valid , when it is satisfied at all

worlds, in all models, of all frames (we write:  ϕ). A formula is valid in a

frame F, when it is satisfied in all models based on F (ie. for all valuations

on F), at all points in the frame (notation F  ϕ). A formula is valid at a

state w of F: (F, w  ϕ), if for any valuation on F, the formula is satisfied at

w.

A formula ϕ is valid on a class of frames F, if it is valid in all frames

F ∈ F. We write F  ϕ.

a

Example 1.9. In this example we work with the basic modal similarity type

τ = { �}. Let us assume we have a frame F = (N, <), where N is the natural

numbers and < the lesser than relation. This frame looks like this:

0 1 2 3
...

First, how do we check if a formula ϕ is not valid on this frame ? If we

can find any valuation that doesn’t make the formula ϕ true, then ϕ is not

valid (on F).

For instance let us check if F  p → �p. We assume that this is the

case. We choose a valuation V such that V (p) = {1}, thus we have that
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F, V, 1  p. By assumption we assumed that p→ �p is true everywhere, so

we must also have that F, V, 1  p → �p. According to the definition of →
and the satisfaction criterion, we get that F, V, 1  �p. For this to be the

case, we must have some n related to 1 where p is true. So, we need to find

any n such that 1 < n and F, V, n  p. But we know that there is no such

n because n 6∈ V (p) such that 1 < n, since V (p) = {1}. This means that F,

V, 1 1 p→ �p, which contradicts our assumption. Thus, (N, <) 1 p→ �p.

The formula p→ �p is not valid on the frame (N, <).

How do we verify that a formula is valid on a frame ? We check if the

formula is satisfied at any state, for any valuation, on that frame.

As an example, we keep the same frame F = (N, <) and we check if the

formula � �p → �p is valid on it. We have to check that for at any world,

for any valuation whenever � �p is true, then �p must also be true. We pick

an arbitrary state n ∈ N and an arbitrary valuation V . If F, V, n  � �p,

then we must find that F, V, n  �p. We assume F, V, n  � �p. Then,

there must be a m ∈ N such that n < m and F, V,m  �p, according to

(1.5). Similarly, there must be a l ∈ N such that m < l and F, V, l  p. Since

it is always the case that for any n,m, l ∈ N, if n < m and m < l, then n < l

(by the definition of <), then it’s always true that F, V, n  �p, since there

is an l ∈ N such that n < l and F, V, l  p. Thus (N, <)  � �p→ �p. The

formula � �p→ �p is valid on the frame (N, <).

Definition 1.10 (Consequence relation). When can we say that a for-

mula is a consequence of some other formulas ? As is usual in logic, we

consider a consequence relation Σ  ϕ to be one where the truth of a set

of formulas Σ, guarantees the truth of a formula ϕ. Since we defined truth

on states of a frame, we also define the consequence relation on states. We

say that ϕ is a consequence of Σ, written Σ  ϕ, when for every model M

and every w ∈ W if we have M, w  Σ, then M, w  ϕ. This consequence

relation is local because it considers consequence at the level of states.
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We can also restrict the consequence relation to a class of frames or mod-

els. If we denote this class of frames or models by C, we denote the restricted

consequence relation C. In such a case, the consequence relation stays the

same, except that it should hold not for all models, but for all models from

C or all models based on all frames from C. a
All the above semantic considerations were given for arbitrary modal

languages (ie. arbitrary τ). Since the basic modal language is extremely

common, we specify those that differ for the special case that is the basic

modal language.

Example 1.11 (Semantics for the basic modal language). As defined

in example 1.2, the basic modal language is one where τ = { �}. Thus a

frame for the basic modal language is a structure F = (W,R) where R is a

binary relation, since � is unary. Models are based on such frames.

Satisfaction for formulas with unary 4 such as �ϕ is a special case of

(1.5) such that:

M, w  �ϕ iff ∃v ∈ W and Rwv such that M, v  ϕ (1.12)

We say that �ϕ is true at w if w sees a world v (through the accessibility

relation) such that ϕ is true at v.

w

�ϕ

v

ϕ

We also get:

M, w  �ϕ iff ∀v ∈ W such that Rwv we have M, v  ϕ (1.13)

This is straightforward from (1.6) or (1.5) but we can nevertheless verify.

By the definition of � we have M, w  �ϕ iff M, w  ¬ �¬ϕ. Thus there is

no v such that Rwv and M, v  ¬ϕ. Then, if it is the case that Rwv for any
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v, we must have that M, v 1 ¬ϕ. By the satisfaction definition this gives us

M, v  ¬¬ϕ, and thus M, v  ϕ. We get that if w sees any world, then ϕ

must be true in that world. This is in conformity with our definition. We do

note however, that if w does not see any other world (ie. there is no v such

that Rwv), then w still satifies �ϕ vacuously (the condition is that if w sees

worlds, then ϕ must be true at those worlds, therefore if w does not see any

world, the condition is vacuously true).

We give two models as examples to illustrate:

w

�ϕ

v2

ϕ

v1

ϕ

v3

ϕ

w

�ϕ

v

The clause for Ṽ corresponding to (1.11) for � is as follows:

Ṽ ( �ϕ) = {w ∈ W : ∃v ∈ W such that Rwv and v ∈ Ṽ (ϕ)} (1.14)

Since � is not primitive in our language, it is not necessary for us to

specify the case for boxed formulas for the function Ṽ . It can nevertheless be

helpful and clarifying, so we give it (and it is pretty straightforward anyway).

Ṽ (�ϕ) = {w ∈ W : ∀v ∈ W such that Rwv we have v ∈ Ṽ (ϕ)} (1.15)

The fact the �ϕ is true whenever there is no accessible world makes sense

according to the semantics: it can be understood as there being no alterna-

tive. And we say that something is necessary when there is no alternative

that this something can’t be the case. If there is an alternative option, then

this something must be true. But if if there is no alternative then, it cannot

not be the case in an alternative.
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Remark 1.12 (Logic). There are two ways to look at what a logic is:

semantic and syntactic. When considered semantically, we associate a logic

with a set of valid formulas. When considered syntactically, a logic is a set

of theorems. Whichever approach we take, we get that a logic is a subset of

formulas of a language L ⊆ Fmlτ .
8

A very nice and sought after property of a logic L is when the two ap-

proaches coincide, or more precisely, when the semantics and syntax define

exactly the same set L ⊆ Fmlτ . Then, we say that L is sound and complete.

Logics need not be sound and complete. Some logics are defined purely

syntactically, and other purely semantically. The search for completeness

and soudness for such logics is often an important task.

a

Definition 1.13 (Semantic definition of a logic). Given a similarity type

τ , a logic can be defined semantically as the set of valid formulas L ⊆ Fmlτ

over a class of frames F.

LF = {ϕ ∈ Fmlτ : F  ϕ}

a
What does the semantic approach tell us ? Very crudely, semantics give

us interpretational tools. For example, in our satisfaction definition we said

that if ¬ϕ is the case, then ϕ is not the case. This is the meaning of ¬ in

our languages. This meaning for instance, lets us interpret ¬ as a negation.

Let’s say our language talks about truth as is often the case for formal logical

languages. Then clearly this meaning we assigned to ¬ seems adequate for

the interpretion, since we could interpret9 w  ¬ϕ as ¬ϕ is true, which gives

8It is customary for some authors define (modal) logics this way (for example in [9]

and [8]), but there are other ways, e.g. [1], [2].
9We sometimes write w  ϕ for M, w  ϕ when the choice of model or frame is obvious

or not important.
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us that ϕ is not true. And if “not ϕ” is true (ie. ϕ is false), then it’s not true

that ϕ is true (ie. ϕ is false). And it works both ways, since we get ¬¬ϕ iff

ϕ. This corresponds to some understanding of truth where “not false” has

the same meaning as “true”, which seems to validate this interpretation of

¬ given the meaning we gave to it in the satisfaction definition.

The main idea is that the meaning we give to symbols (such as ¬), lets

us interpret those symbols. An important point to note however is that the

meaning given to ¬ is not limited to interpreting our language as talking

about truth (or even, not limited to some intended interpretation for which

the meaning has been specifically given). Essentially, meaning is just a de-

fined property. And a meaning, once specified, lets itself be interpreted with

whichever interpretation. Quite often, a meaning is chosen with a specific

intended interpretation in mind.

One last remark concerning negation. It may seem that the interpretation

of a concept such as negation is straightforward, and hence, that the defined

meaning for a negation symbol is always going to be more or less the same.

This is not the case, since there are many logics, where negation is not given

the same semantical meaning that we gave to it. This happens in some

intuitionistic and many-valued logics for example. It is easy to see that in a

3-valued logic for instance, a concept of negation must behave differently.

All the above remarks hold for any symbol given an explicit meaning

in a satisfaction definition. Different meanings can and have been given to

what we call disjunction (inclusive or exclusive), and implication (materical

implication, strict implication), to name just a few others. The fact that we

call different defined properties (ie. meanings) by the same name : negation,

disjunction, implication, comes from how we have interpreted those meanings

(as negation, disjunction and implication for instance).

What about modalities ? We defined them as properties on frames. These

properties can then be interpreted however we like. Let us take the case of the
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basic modal languages, and assume that we have a simple model M = (W,R,

V ) where W = {w, v, u}, R = {(w, v), (w, u)} and V (p) = {v}. According to

the satisfaction definition, since Rwv and v  p, we have w  �p. Also, since

Rwu but u 1 p, we also have w  ¬�p. How do these meanings correspond

to some of the ways � and � have been and are interpreted ? Let us start

with the alethic interpretation, where � is understood as “possibility” and �

as “necessity”. Points w ∈ W can be interpreted as states of the world (this

is just one possible interpretation). Propositional letters can be understood

as facts about the world (such as “it rains”). Let’s assume that p in our

model is a fact such as “it rains”. Then �p is interpreted as “it is possible

that it rains”. Given that w is a state of the world, R is understood as telling

us what are the other possible states of the world, given a valuation (which

facts are the case and which are not). We have established that �p is true

means that “it is possible that it rains”, thus there is a possible state where

p is true, so there must be a state related to w where p is true. This is

precisely how we defined �. The idea is that frames have let us defined the

notion of possibility in such a way. What about necessity ? If something is

necessary then it can’t be otherwise. In our model, we have u related to w,

so u represents a possible state of the world. Since u 6∈ V (p), it represents

the possibility that “it doesn’t rain”. Thus at w (a certain state of the world,

that is a collection of facts), it is not necessary that it rains (so w  ¬�p),
because it’s possible that it rains (so w  �p), but also that it doesn’t rain

(w  �¬p). Had we chosen a model where V (p) = {v, u}, then, since all

possible states accesible from w would make p true, we would have that at

w, it is necessary that p.

The use of frames in Kripke semantics is a fairly simple yet powerful tool

for interpreting modalities.
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1.3 Syntax

We want to be able to talk about all instances of certain formulas. For

example we might want to talk about all instances of a formula such as

ϕ ∨ ¬ϕ. For example, (ψ ∧ �χ) ∨ ¬(ψ ∧ �χ) is a substitution instance of

ϕ ∨ ¬ϕ. Why ? We might for example want to say that all instances of a

certain formula, is valid (or not) on a certain frame or class of frames. We

need a syntactic tool for that.

Definition 1.14 (Substitution). We first define a substitution function

from the set of propositional letters to formulas, and we extend it such that

we get a substitution function from formulas to formulas. Given a modal

language ML(τ,Φ), we define s : Φ −→ Fmlτ and s̃ : Fmlτ −→ Fmlτ .

We can substitute any formula of the language for propositional letters,

so s is any function with domain Φ and range Fmlτ . We define s̃ like so (for

all p ∈ Φ and all n-ary 4 ∈ τ) :

s̃(p) = s(p)

s̃(⊥) = ⊥

s̃(¬ϕ) = ¬s̃(ϕ)

s̃(ϕ ∨ ψ) = s̃(ϕ) ∨ s̃(ψ)

s̃(4(ϕ1, ..., ϕn)) = 4(s̃(ϕ1), ..., s̃(ϕn))

a
We work with Hilbert-style axiom systems.

Definition 1.15 (Syntactic definition of a modal logic). Logics viewed

syntactically are sets of formulas that satisfy certain closure conditions10. A

modal logic for a similarity type τ is a set L ⊆ Fmlτ , such that:

10For a different approach see e.g. [1], [2].
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(i) L contains all instances of propositional tautologies

(ii) L is closed under the proof rules :

(a) Modus Ponens: if ϕ ∈ L and ϕ→ ψ ∈ L, then ψ ∈ L.

(b) Uniform Substitution: if ϕ ∈ L, then all the substitution instances

of ϕ are in L.

When a formula ϕ ∈ L we say that ϕ is a theorem, and we write it `L ϕ.

Thus

L = {ϕ ∈ Fmlτ : `L ϕ}

a

Definition 1.16 (Axioms). Axioms are sets of formulas. Logics can be

generated by adding the condition that they must be the smallest logic con-

taining a certain set of formulas. We may call such sets of formulas axioms.

a

Definition 1.17 (Normal Modal Logics). A modal logic of similarity

type τ is called normal11 when it contains for every 4of arity ar( 4) :

(i) Axioms Ki 4for all i such that 1 ≤ i ≤ ar( 4):

(Ki 4) 4(r1, ..., (p→ q)i, ..., rar( 4))→

→ ( 4(r1, ..., pi, ..., rar( 4))→ 4(r1, ..., qi, ..., rar( 4)))

(ii) Axiom Dual 4:

(Dual 4) 4(r1, ..., rar( 4))↔ ¬ 4(¬r1, ...,¬rar( 4))

(iii) ar( 4)-many Generalization (proof) rules (for each i such that 1 ≤ i ≤
ar( 4)) :

11Cf. Def 4.13 in [8] and we refer to Chapter 2 in [9]
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if `L ϕ, then `L 4(⊥1, ..., ϕi, ...,⊥ar( 4))

We need Dual axioms because we use 4 as primitives in our languages.

They are simply the syntactic counterpart of how we defined the 4(seman-

tically) previously. We need them because our axioms are expressed in terms

of 4.
We note that this is a common way to axiomatize normal modal logics,

but not the only one.

Definition 1.18 (Logic Kτ). The logic Kτ is the smallest normal modal

logic. That is, according to definitions 1.15 and 1.17, it contains all tautolo-

gies, axioms Ki 4, and Dual 4(for all 4) and is closed under Modus Ponens,

Uniform Substitution, and Generalization Rules.

If we add the set of axioms Σ to the logic Kτ , we call this new logic KτΣ.

Definition 1.19 (Proofs). A proof for a logic L is a finite sequence of

formulas such that each formula is either a tautology, an axiom, or follows

from previous formulas in the sequence by the application of a proof rule.

A formula ϕ is provable in a logic L when it is the last element of a proof

sequence. In such a case, we have ϕ ∈ L. We also say that ϕ is a theorem of

L, and we write `L ϕ. If not, ie. if ϕ 6∈ L, we write 0L ϕ
a

Definition 1.20 (Deduction). A formula ϕ is deducible from a set of for-

mulas Γ in a logic L, written Γ `L ϕ, if `L ϕ or if there are formulas

ψ1, ..., ψn ∈ Γ such that `L (ψ1 ∧ ... ∧ ψn)→ ϕ.

If ϕ is not L-deducible from Γ, ie. if Γ `L ϕ is not the case, we write

Γ 0L ϕ.

Definition 1.21 (Consistency and Inconsistency). A set of formulas

Γ is L-consistent if Γ 0L ⊥, it is inconsistent otherwise. A formula ϕ is

L-consistent if {ϕ} 0L ⊥, inconsistent otherwise.
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Example 1.22 (Normal modal logics for the basic similarity type).

Many quite common modal logics are normal modal logics of the basic simi-

larity type. The corresponding axioms and rule of 1.17 for the basic similarity

type are the following:

(i) Axiom K�: �(p→ q)→ (�p→ �q)

(ii) Dual�: �p↔ ¬�¬p

(iii) Generalization Rule: if `L ϕ, then `L �ϕ

Axiom (i) is usually written (K) and is known as the Kripke scheme.

Axiom (ii) is introduced as a syntactic equivalent for the definition of �. The

smallest normal logic for the basic similarity type is called K and contains

all tautologies, (K), (Dual) and is closed under Modus Ponens, Uniform

Substitution, and Generalization.

Why are normal modal logics so important ? As we will see later, the

minimal modal logic K is sound for the class of all frames. This means that

the theorems of K are valid in all frames. If `K ϕ, then  ϕ. If we use Kripke

semantics, that is, we use frames to interpret modal languages, then K is the

minimal set of axioms and rules we need, if we want to have completeness

and soundness results with Kripke semantics. If we have Kripke semantics, as

we do, then the corresponding logics defined syntactically, are normal modal

logics.

For any normal modal logic L we have K ⊆ L. Thus we can say that K

is the logic of the class of all frames.

Common examples of modal logics such as S5, S4, T, etc. can be found

in e.g. Chapter 2 in [9], and in [8], [10].
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Chapter 2

Completeness results for

Kripke semantics

In this chapter we discuss completeness results for Kripke semantics, via

building canonical models. Then we turn our discussion to the incomplete-

ness limitations inherent to this frame based semantics.

2.1 Completeness for Kripke semantics

Definition 2.1 (Soundness). A logic L is sound with respect to a class of

structures F when:

`L ϕ implies F  ϕ

In other words, if ϕ is a theorem of L, then ϕ is valid on all structures

F ∈ F.

a
We claimed at earlier that the logic K, the smallest normal modal logic,

is important because its theorems are valid on all frames. This means that

`K ϕ implies  ϕ.
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Thus, any normal modal logic contains K. Any normal modal logic is

either K or an extension of it.

Definition 2.2 (Completeness). A logic L is strongly complete with re-

spect to F (for any set of formulas Γ ∪ {ϕ}) if:

Γ F ϕ implies Γ `L ϕ

A logic L is weakly complete with respect to F (for any formula ϕ) if:

F  ϕ implies `L ϕ

We note that F is often a class of frames, but it can also be a class of

models, or general frames.

When we talk about completeness we mean strong completeness.

We prove strong completeness of a logic L with respect to a class of

frames by building canonical models. A canonical model for a normal modal

logic L is a model that satisfies exactly the theorems of L. The main idea

behind canonical models is that we use a set of maximal consistent sets as

the underlying set of the frame of the canonical model.

We introduce the two following lemmas that will useful for later proofs.

Lemma 2.3. For any normal modal logic L we have

Σ `L ϕ iff Σ ∪ {¬ϕ} is inconsistent

Σ `L ¬ϕ iff Σ ∪ {ϕ} is inconsistent

Proof. (⇒) If Σ `L ϕ, then Σ ∪ {¬ϕ} `L ϕ ∧ ¬ϕ, thus Σ ∪ {¬ϕ} `L ⊥ (by

definition of ⊥), so Σ ∪ {¬ϕ} is inconsistent.

(⇐) If Σ ∪ {¬ϕ} is inconsistent, there is a ψ such that Σ ∪ {¬ϕ} `L ψ
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and Σ ∪ {¬ϕ} `L ¬ψ :

1. Σ ∪ {¬ϕ} `L ψ

2. Σ ∪ {¬ϕ} `L ¬ψ

3. Σ `L ¬ϕ→ ψ Ded., 1

4. Σ `L ¬ϕ→ ¬ψ Ded., 2

5. Σ `L (¬ϕ→ ¬ψ)→ ((¬ϕ→ ψ)→ ϕ) Tautology

6. Σ `L (¬ϕ→ ψ)→ ϕ MP,4,5

7. Σ `L ϕ MP,3,6

Thus if Σ∪ {¬ϕ} is inconsistent, then Σ `L ϕ. By uniform substitution and

the tautology ϕ↔ ¬¬ϕ, we obtain that Σ `L ¬ϕ iff Σ∪ {ϕ} is inconsistent.

Corollary 2.4. For any normal modal logic L we have

Σ 0L ϕ iff Σ ∪ {¬ϕ} is consistent

Σ 0L ¬ϕ iff Σ ∪ {ϕ} is consistent

Proof. Direct from Lemma 2.3.

Lemma 2.5. If Σ is consistent and Σ `L ϕ, then Σ ∪ {ϕ} is consistent.

Proof. If Σ is consistent and Σ `L ϕ, then Σ 0L ¬ϕ (otherwise Σ would be

inconsistent). By Lemma 2.3, we have Σ 0L ¬ϕ iff Σ∪{ϕ} is consistent.

Theorem 2.6. A logic L is strongly complete with respect to a class of struc-

tures F iff every L-consistent set of formulas Σ is satisfiable on some A ∈ F,

ie. ∃A ∈ F,A  Σ for all L-consistent Σ.

Proof. (⇒) We show that if L is strongly complete with respect to F , then

for every L-consistent Σ there exists an A ∈ F such that A  Σ. By contrapo-

sition, this means that if there exist a consistent Σ such that ∀A ∈ F,A 1 Σ,

27



then L is not strongly complete. But then we would have Σ F ϕ for any

ϕ since the definition of Σ F ϕ is that if any A ∈ F makes Σ true, then A

makes ϕ true. But since there is no such A, it is vacuously true. But then L

is not strongly complete, since if it were, it would imply that Σ `L ϕ for any

ϕ, for example ⊥. But this is not possible since Σ is consistent.

(⇐) We prove by contraposition, so we assume that L is not strongly

complete with respect to F, and want to show that ∃Σ that can’t be satisfied

in any structure A ∈ F. Since L is not strongly complete with respect to F,

then there is a set Γ∪{ϕ} such that Γ F ϕ and Γ 0L ϕ (by the definition of

strong completeness). Since Γ 0L ϕ, by Corollary 2.4, Γ∪{¬ϕ} is consistent.

But Γ ∪ {¬ϕ} is not satisfiable on any A ∈ F. Because Γ F ϕ means that

∀A ∈ F if A  Γ then A  ϕ. But then clearly A 1 Γ ∪ {¬ϕ}.

Definition 2.7 (Maximal Consistent Sets). A set of formulas Σ is max-

imal L-consistent if Σ is L-consistent (Σ 0L ⊥) and for any Γ such that

Σ ( Γ, then Γ is inconsistent (Γ `L ⊥). We write that Σ is L-MCS, if it is

maximal consistent.

Lemma 2.8 (Properties of MCS). For all L-MCS Σ, the following state-

ments hold:

(i) If Σ is a maximal consistent set, then Σ = Ded(Σ), where Ded(Σ) is

the set of all ϕ such that Σ `L ϕ. Or, equivalently if Σ is a L-MCS,

then Σ `L ϕ iff ϕ ∈ Σ.

Proof. Towards a contradiction we assume that Σ is L-MCS but Σ 6=
Ded(Σ). We have that Σ is maximal and Σ ( Ded(Σ). Then ∃ϕ 6∈ Σ

such that Σ `L ϕ. By Lemma 2.5, since Σ is consistent and Σ `L ϕ,

then Σ ∪ {ϕ} is consistent. But then Σ is not a maximal consistent

set because we have Σ ( Σ ∪ {ϕ} such that Σ ∪ {ϕ} is consistent, and

any proper superset of a maximal consistent set is inconsistent. We
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reached a contradiction. Thus if Σ is a maximal consistent set, then

Σ = Ded(Σ).

(ii) If ϕ ∈ Σ and ϕ→ ψ ∈ Σ, then ψ ∈ Σ

Proof. We assume that ϕ ∈ Σ and ϕ → ψ ∈ Σ. By Lemma 2.8-(i) we

have Σ `L ϕ and Σ `L ϕ → ψ. By Modus Ponens this yields Σ `L ψ.

And by Lemma 2.8-(i) ψ ∈ Σ.

(iii) For all ϕ, either ϕ ∈ Σ or ¬ϕ ∈ Σ

Proof. Suppose that ϕ 6∈ Σ. Then since Σ is maximal, Σ∪{ϕ} is incon-

sistent (by definition of MCS). By Lemma 2.3 if Σ∪{ϕ} is inconsistent,

then we have Σ `L ¬ϕ. By Lemma 2.8-(i) Σ `L ¬ϕ yields ¬ϕ ∈ Σ.

Thus if ϕ 6∈ Σ, then ¬ϕ ∈ Σ. The argument is the similar for ¬ϕ 6∈ Σ

(we substitute ϕ with ¬ϕ in the argument).

(iv) For all ϕ, ψ we have ϕ ∨ ψ ∈ Σ iff ϕ ∈ Σ or ψ ∈ Σ

Proof. (⇒) We have ϕ ∨ ψ ∈ Σ, thus by Lemma 2.8-(i) we get Σ `L
ϕ∨ψ. Hence either Σ `L ϕ or Σ `L ψ. Then, by Lemma 2.8-(i), ϕ ∈ Σ

or ψ ∈ Σ.

(⇐) The argument is similar to the left to right direction. ϕ ∈ Σ or

ψ ∈ Σ iff Σ `L ϕ or Σ `L ψ iff Σ `L ϕ ∨ ψ iff ϕ ∨ ψ ∈ Σ.

(v) For all ϕ, ψ we have ϕ ∧ ψ ∈ Σ iff ϕ ∈ Σ and ψ ∈ Σ.

Proof. ϕ ∧ ψ ∈ Σ iff (by Lemma 2.8-(i)) Σ `L ϕ ∧ ψ iff Σ `L ϕ and

Σ `L ψ iff ϕ ∈ Σ and ψ ∈ Σ.

Lemma 2.9 (Lindenbaum’s Lemma). If Σ is a L-consistent set of for-

mulas, then there is a L-MCS Σ+ such that Σ ⊆ Σ+.
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Proof. Let ϕ0, ϕ1, ... be an enumeration of all the formulas of the language

of L. We define Σ+ :

Σ0 = Σ

Σn+1 =

Σn ∪ {ϕn} if it is L-consistent

Σn ∪ {¬ϕn} otherwise

Σ+ =
⋃

Σn

We need to show that (i) for each n, the set Σn is consistent. Furthermore,

we have to prove that (ii) Σ+ is a maximal consistent set.

(i) We assumed that Σ is consistent, so Σ0 is obviously consistent. To

prove that Σn+1 is consistent, we have to show that Σn ∪ {ϕn} is consistent

or if it isn’t, that Σn ∪ {¬ϕn} is consistent. If Σn ∪ {ϕn} is consistent, then

it is obviously consistent. If Σn ∪ {ϕn} is inconsistent, then by Lemma 2.3,

we have Σn `L ¬ϕn. Since Σn is consistent and Σn `L ¬ϕn, by Lemma 2.5

we obtain that Σn ∪ {¬ϕn} is consistent. Thus Σn+1 is always consistent.

(ii) We show that Σ+ is consistent and maximal. Towards a contradiction,

we assume that Σ+ is inconsistent, ie. Σ+ `L ⊥. This means that there are

ψ1, ..., ψn ∈ Σ+ such that (by the Deduction theorem) `L (ψ1∧ ...∧ψn)→ ⊥.

But then there must be a k such that ψ1, ...ψn ∈ Σk ⊆ Σ+. Such a Σk `L ⊥,

ie. would be inconsistent. Which contradicts our assumption.

Finally, we need to prove that Σ+ is maximal. Towards a contradiction,

we suppose that it is not a maximal consistent set. Then, there is a ϕ such

that ϕ 6∈ Σ+ and ¬ϕ 6∈ Σ+ (by Lemma 2.8-(iii)). Since all formulas of

the language are enumerated, ϕ must be one of ϕn. But then according

to the definition of Σn+1, we must either have ϕn ∈ Σn+1 or ¬ϕn ∈ Σn+1.

Since Σn+1 ⊆ Σ+, then ϕn ∈ Σ+ or ¬ϕn ∈ Σ+. But this contradicts our

assumption. Therefore, Σ+ must be a maximal consistent set.

We first start by giving a general completeness result for the normal

30



modal logics of the basic similarity type, then we show such a result for

arbitrary similarity type. Each contains three important steps (i) definition

of canonical models, (ii) proof of Existence lemma and (iii) Truth lemma.

Then we are able to state the Canonical Model Theorem, the completeness

result we wanted to achieve.

Definition 2.10 (Canonical model (for the basic similarity type)).

The canonical model for a normal modal logic L (with the basic similarity

type) is the model ML = (WL, RL, V L) such that :

(i) WL is the set of all L-MCS

(ii) RL is a binary relation on WL defined by RLwv if ϕ ∈ v implies �ϕ ∈ w
(for all ϕ).

(iii) V L is a function V L : Φ −→ ℘(WL) such that for all p ∈ Φ, V L(p) =

{w ∈ WL : p ∈ w}

For a normal modal logic L, its canonical model is a Kripke model which

satisfies exactly the theorems of L.

Lemma 2.11.
(
�ϕ ∈ w implies ϕ ∈ v

)
iff RLwv.

Proof. (⇒) We prove that if �ϕ ∈ w implies ϕ ∈ v, then RLwv. Equivalently

by taking the contrapositive of the antecedant we can prove that if ϕ 6∈ v

implies �ϕ 6∈ w, then RLwv. Since v is a MCS and ϕ 6∈ v, is equivalent

to ¬ϕ ∈ v. Similarly ¬�ϕ ∈ w. So, we need to show that if ¬ϕ ∈ v

implies ¬�ϕ ∈ w, then RLwv. By the Dual axiom, from ¬�ϕ ∈ w we get

¬¬ �¬ϕ ∈ w, and thus �¬ϕ ∈ w. But if ¬ϕ ∈ v implies �¬ϕ ∈ w, then, by

clause (ii) of the canonical model definition 2.10, we have RLwv.

(⇐) We prove that if RLwv, then �ϕ ∈ w implies ϕ ∈ v. We prove by

contraposition: we assume RLwv and ϕ 6∈ v and show that �ϕ 6∈ w. Since

v is maximal consistent and ϕ 6∈ v, we have ¬ϕ ∈ v. By clause (ii) of the
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canonical model definition 2.10, since we have RLwv and ¬ϕ ∈ v, then we

also have �¬ϕ ∈ w. w is a MCS, so because it is consistent ¬ �¬ 6∈ w. But

then we have �ϕ 6∈ w, the result we wanted.

For the next three statements (Lemmas 2.12, 2.13 and Theorem 2.14) we

refer to Lemmas 4.20, 4.21 and Theorem 4.22 in [8]. Here we give full and

more detailed proofs.

Lemma 2.12 (Existence Lemma). For any normal modal logic L (with

the basic modal similarity type) and for any w ∈ WL :

�ϕ ∈ w implies ∃v ∈ WL such that RLwv and ϕ ∈ v

Proof. We suppose that �ϕ ∈ w. We want to show that there is v such

that RLwv and ϕ ∈ v. Let u be {ϕ} ∪ {ψ : �ψ ∈ w}. We will construct

v ⊇ u such that it extends u. ϕ should clearly be in u, because we want

it to be in v. We also want all ψ such that �ψ ∈ w to be in u, and in v,

to ensure that we have the relation RLwv, since according to the previous

Lemma 2.11, if for all ψ we have that �ψ ∈ w such that ψ ∈ v, then RLwv.

If all the mentioned conditions are met, all that is left to be shown is that

v is a L-MCS. By the Lindenbaum Lemma 2.9, any L-consistent set can be

extended to an L-MCS. If we can show that u is L-consistent, then we simply

extend it to a L-MCS v and we are done.

We show that u is consistent, and prove it by contradiction. We assume

that u is inconsistent. Since u is inconsistent and ϕ ∈ u, by the Deduction

theorem there are ψ1, ..., ψn ∈ u such that `L (ψ1 ∧ ... ∧ ψn) → ¬ϕ. By

Generalization we get `L �((ψ1 ∧ ... ∧ ψn)→ ¬ϕ). By the previous formula

and the instance of (K) `L �((ψ1 ∧ ... ∧ ψn) → ¬ϕ) → (�(ψ1 ∧ ... ∧ ψn) →
�¬ϕ), we have `L �(ψ1 ∧ ... ∧ ψn)→ �¬ϕ.

For the next step we need to show that (�ψ1∧...∧�ψn)→ �(ψ1∧...∧ψn)
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is a theorem of every normal modal logic L :

1. `L ψ1 → (ψ2 → ...→ (ψn → (ψ1 ∧ ... ∧ ψn)...) Tautology

2. `L �(ψ1 → (ψ2 → ...→ (ψn → (ψ1 ∧ ... ∧ ψn)...) Gen, 1

3. `L �(ψ1 → (ψ2 → ...→ (ψn → (ψ1 ∧ ... ∧ ψn)...)→

→ (�ψ1 → �(ψ2 → ...→ (ψn → (ψ1 ∧ ... ∧ ψn)...) inst. (K)

4. `L �ψ1 → �(ψ2 → ...→ (ψn → (ψ1 ∧ ... ∧ ψn)...) MP, 2, 3

5. `L �(ψ2 → (ψ3 → ...→ (ψn → (ψ1 ∧ ... ∧ ψn)...)→

→ (�ψ2 → �(ψ3 → ...→ (ψn → (ψ1 ∧ ... ∧ ψn)...) inst. (K)

5∗. `L �(ψi → (ψi+1 → ...→ (ψn → (ψ1 ∧ ... ∧ ψn)...)→ inst. (K)

→ (�ψi → �(ψi+1 → ...→ (ψn → (ψ1 ∧ ... ∧ ψn)...) for i, 0 < i < n

6. `L �(ψn → (ψ1 ∧ ... ∧ ψn))→ (�ψn → �(ψ1 ∧ ... ∧ ψn)) inst. (K)

7. `L �ψ1 → (�ψ2 → ...→ (�ψn → �(ψ1 ∧ ... ∧ ψn)...) Ded. 4,5,5∗, 6

8. `L (�ψ1 ∧ ... ∧�ψn)→ �(ψ1 ∧ ... ∧ ψn) Ded., 7

We had `L �(ψ1 ∧ ... ∧ ψn) → �¬ϕ, and since we just showed that

`L (�ψ1∧ ...∧�ψn)→ �(ψ1∧ ...∧ψn), we get `L (�ψ1∧ ...∧�ψn)→ �¬ϕ.

We defined w such that �ψ1, ...,�ψn ∈ w and since w is a L-MCS, it is

closed under conjunction, thus �ψ1 ∧ ... ∧ �ψn ∈ w. Since we just showed

that (�ψ1 ∧ ... ∧�ψn)→ �¬ϕ is a theorem and �ψ1 ∧ ... ∧�ψn ∈ w, then

we must have �¬ϕ ∈ w. By the Dual axiom we have ¬ �ϕ ∈ w. But this

contradicts our assumption that �ϕ ∈ w, since w is consistent. Hence we

reach a contradiction, and get that u is consistent, which is what we needed

to finish the proof.

Lemma 2.13 (Truth Lemma). For all normal modal logics L (in the basic

modal similarity type) and all ϕ:

ML, w  ϕ iff ϕ ∈ w
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Proof. (⇒) We prove by induction on the complexity of ϕ. If ϕ if a propo-

sitional letter, this holds by definition of canonical models: ML, w  p iff

w ∈ V L(p) iff p ∈ w (by defintion of V L). ML, w  ⊥ is never the case since

w is consistent because it is a L-MCS: so ML, w 1 ⊥ since we always have

⊥ 6∈ w. If ϕ is of the form ¬ψ, we have ML, w  ¬ψ, thus ML, w 1 ψ. By

the induction hypothesis this is the case iff ψ 6∈ w. But since w is a L-MCS,

if ψ 6∈ w, then ¬ψ ∈ w (this is a property of maximal consistent sets). This

is the result we wanted, if ML, w  ¬ψ, then ¬ψ ∈ w. If ϕ is of the form

ψ ∨ χ. Then ML, w  ψ ∨ χ iff ML, w  ψ or ML, w  χ. By the induction

hypothesis we get ψ ∈ w or χ ∈ w. But a property of maximal consistent sets

such as w is that if ψ ∈ w or χ ∈ w, then ψ∨χ ∈ w. Thus if ML, w  ψ∨χ,

then ψ ∨ χ ∈ w. If ϕ is of the form �ψ. We have ML, w  �ψ thus there is

a v such that RLwv and ML, v  ψ. By the induction hypothesis this gives

us ψ ∈ v. We have RLwv and ψ ∈ v, thus by the definition of RL we get

�ψ ∈ w. This is what we wanted: if ML, w  �ψ then �ψ ∈ w.

(⇐) The propositional cases are very similar to the left to right direction.

p ∈ w, by definition of V L, iff w ∈ V L(p) iff ML, w  p. ¬ψ ∈ w iff (by

property of MCS) ψ 6∈ w, then (by the induction hypothesis) ML, w 1 ψ,

and by the satisfaction definition ML, w  ¬ϕ. ψ ∨ χ ∈ w iff (by property

of MCS) ψ ∈ w or χ ∈ w, by the induction hypothesis we get ML, w  ψ or

ML, w  χ, and thus by the satisfaction definition ML, w  ψ ∨ χ. For �ψ.

We suppose that �ψ ∈ w, then by the Existence Lemma (Lemma 2.12), we

have ∃v such that RLwv and ψ ∈ v. By the induction hypothesis ML, v  ψ.

Thus, since we have a v such that RLwv and ML, v  ψ, by the satisfaction

definition we get ML, w  �ψ.

Theorem 2.14 (Canonical Model Theorem). Every normal modal logic

L in the basic similarity type is strongly complete with respect to its canonical

model.
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Proof. For any consistent set Σ of a normal modal logic L, by the Linden-

baum Lemma, there is a maximal consistent set Σ+ such that Σ ⊆ Σ+. By

the Truth Lemma (Lemma 2.13), ML,Σ+  Σ.

Theorem 2.15. The logic K of the basic similarity type is strongly complete

with respect to the class of all frames.

Proof. By Theorem 2.6 we need to find a model M such that for every K-

consistent Σ there is a w in M that satisfies Σ, ie. we need to find a model M

such that M, w  Σ, for every consistent Σ. There is such a model, namely

the canonical model for K: MK. For w, we choose any K-MCS Σ+ such

that Σ ⊆ Σ+. By the Lindenbaum Lemma, we can always find such a Σ+.

By the Truth Lemma, we obtain MK,Σ+  Σ.

So far we only dealt with the basic similarity type. We now do the same

for an arbitrary similarity type, to get a general result.

Definition 2.16 (Canonical model (for arbitrary similarity type)).

We let τ be any modal similarity type and L a normal τ -modal logic. The

canonical model ML = (WL, RL
4, V

L)4∈τ for the logic L is defined such that:

(i) WL is the set of all L-MCS

(ii) There is a relation RL
4 ⊆ (WL)n+1 for each n-ary 4 ∈ τ , defined by

RL
4wv1...vn if for all formulas ϕ1 ∈ v1, ..., ϕn ∈ vn we have 4(ϕ1, ...,

ϕn) ∈ w.

(iii) V L is a function V L : Φ −→ ℘(WL) such that for all p ∈ Φ, V L(p) =

{w ∈ WL : p ∈ w}

Lemma 2.17. For any normal modal logic L, 4(ϕ1, ..., ϕn) ∈ w implies

ϕi ∈ vi (for i such that 1 ≤ i ≤ n) iff RL
4wv1...vn.
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Proof. (⇒) We prove that if 4(ϕ1, ..., ϕn) ∈ w implies ϕi ∈ vi (for i such that

1 ≤ i ≤ n), then RL
4wv1...vn. By taking the contrapositive of the antecedant,

we can show that if ϕi 6∈ vi (for 1 ≤ i ≤ n) implies 4(ϕ1, ..., ϕn) 6∈ w,

then RL
4wv1...vn. By Lemma 2.8, since vi are L-MCS and ϕi 6∈ vi, we have

¬ϕi ∈ vi. Similarly if 4(ϕ1, ..., ϕn) 6∈ w, then ¬ 4(ϕ1, ..., ϕn) ∈ w. It’s

enough to show that if ¬ϕi ∈ vi implies ¬ 4(ϕ1, ..., ϕn), then RL
4wv1...vn. By

the axiom Dual4 from ¬ 4(ϕ1, ..., ϕn) ∈ w we get ¬¬4(¬ϕ1, ...,¬ϕn) ∈ w,

and thus 4(¬ϕ1, ...,¬ϕn) ∈ w. But then if for all i such that 1 ≤ i ≤ n,

¬ϕi ∈ vi implies 4(¬ϕ1, ...,¬ϕn) ∈ w, then by clause (ii) of the Canonical

model definition, we obtain that RL
4wv1...vn.

(⇐) We prove that if RL
4wv1...vn, then 4(ϕ1, ..., ϕn) ∈ w implies ϕi ∈ vi.

By taking the contrapositive of the consequent, if we assume that RL
4wv1...vn

and ϕi 6∈ vi, then we need to show that 4(ϕ1, ..., ϕn) 6∈ w. By Lemma 2.8,

since all vi are maximal consistent sets and ϕi 6∈ vi, we have that ¬ϕi ∈ vi.
By the clause defining RL

4wv1...vn in the Canonical model definition, since

we have RL
4wv1...vn and ¬ϕi ∈ vi, then we also have 4(¬ϕ1, ...,¬ϕn) ∈ w.

Since w is a maximal consistent set, by consistency, ¬4(¬ϕ1, ...,¬ϕn) 6∈ w.

By Dual4, this gives us 4(ϕ1, ..., ϕn) 6∈ w, the result we needed.

Next we state and prove, for the arbitrary similarity type, the analogs of

Lemmas 2.12, 2.13 and Theorem 2.14. For these statements (Lemmas 2.18,

2.19, and Theorem 2.20), we give complete and detailed proofs, which are

missing in [8].

Lemma 2.18 (Existence Lemma for the arbitrary modal similarity

type). For all normal modal logics L we have

4(ϕ1, ..., ϕn) ∈ w implies ∃v1, ...vn ∈ WL

such that ϕ1 ∈ v1, ..., ϕn ∈ vn and RLwv1...vn

Proof. Suppose 4(ϕ1, ..., ϕn) ∈ w. Let ψ0, ψ1, ... enumerate all the formulas

of our language. We construct by induction n sequences of sets of formulas
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{ϕ1} = Σϕ1

0 ⊆ Σϕ1

1 ⊆ . . .

{ϕ2} = Σϕ2

0 ⊆ Σϕ2

1 ⊆ . . .
...

...

{ϕn} = Σϕn

0 ⊆ Σϕn

1 ⊆ . . .

such that for 1 ≤ j ≤ n, all Σ
ϕj

i are finite and consistent, and

Σ
ϕj

i+1 is either Σ
ϕj

i ∪ {ψi} or Σ
ϕj

i ∪ {¬ψi}

Suppose the sets Σ
ϕj

i have already been defined for i ≤ k, for all 1 ≤ j ≤
n. We have to construct Σ

ϕj

k+1.

Let σ
ϕj

k :=
∧

Σ
ϕj

k . Then we have 4(σϕ1

k , . . . , σ
ϕn

k ) ∈ w. It follows that

4(σϕ1

k ∧ (ψk ∨ ¬ψk), . . . , σϕn

k ∧ (ψk ∨ ¬ψk)) ∈ w,

and hence

4((σϕ1

k ∧ ψk) ∨ (σϕ1

k ∧ ¬ψk), . . . , (σ
ϕn

k ∧ ψk) ∨ (σϕn

k ∧ ¬ψk)) ∈ w.

But then one of the formulas 4(σϕ1

k ∧ψ
ε1
k , . . . , σ

ϕn

k ∧ψ
εn
k ) belong to w, where

εi is either 0 or 1, and ψ1 = ψ and ψ0 = ¬ψ. Fix the sequence of those εi’s

for which the previous formula is in w and, for all 1 ≤ j ≤ n, let

Σ
ϕj

k+1 =

{
Σ
ϕj

k ∪ {ψk} if εj = 1

Σ
ϕj

k ∪ {¬ψk} otherwise.

It’s easy to check that each Σ
ϕj

k+1 satisfies our inductive hypotheses.

Finally, put vj =
⋃
i Σ

ϕj

i for 1 ≤ j ≤ n. Thus all v1, . . . , vn are L-MCS,

and we have ϕ1 ∈ v1, . . . , ϕn ∈ vn and RL
4wv1n as we wanted.

Lemma 2.19 (Truth Lemma for arbitrary similarity type). For all

normal modal logics L, and all ϕ we have

ML, w  iff ϕ ∈ w
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Proof. We prove by induction on the complexity of ϕ. The cases when ϕ

is of the form p,¬ψ, ψ ∨ χ are the same as in Lemma 2.13. Thus we only

need to show the modal case for arbitrary modalities, ie. to prove that ML,

w  4(ψ1, ..., ψn) iff 4(ψ1, ..., ψn) ∈ w, for all n-ary modal operators.

(⇒) For ϕ of the form 4(ψ1, ..., ψn) we need to show that if ML, w 

4(ψ1, ..., ψn), then 4(ψ1, ..., ψn) ∈ w. We assume ML, w  4(ψ1, ..., ψn),

thus by the satisfaction definition we have some v1, ..., vn ∈ WL andRL
4wv1...vn,

such that ML, vi  ϕi (for all i such that 1 ≤ i ≤ n). By the induction hy-

pothesis this gives us ψi ∈ vi. We have RL
4wv1...vn and for each i (1 ≤ i ≤ n)

ψi ∈ vi, thus by the definition of RL
4wv1...vn (Def. 2.16-(ii)) we have that

4(ψ1, ..., ψn) ∈ w.

(⇐) We suppose that4(ψ1, ..., ψn) ∈ w and show that ML, w  4(ψ1, ...,

ψn). By the Existence Lemma (Lemma 2.18) we have some v1, ..., vn ∈ WL,

and for all i such that 1 ≤ i ≤ n we have ϕi ∈ vi and RLwv1...vn. By the

induction hypothesis we have, ML, vi  ψi. Since we have RLwv1...vn and

ML, vi  ψi, then by the satisfaction definition we obtain ML, w  4(ψ1, ...,

ψn), the desired result.

Theorem 2.20 (Canonical Model Theorem, for arbitrary modal sim-

ilarity type). For any τ , any normal modal logic L is strongly complete with

respect to its canonical model.

Proof. Same as proof of Theorem 2.10. For any consistent set Σ of of the nor-

mal modal logic L, by Lindenbaum’s Lemma there is a L-MCS Σ+ extending

Σ. By the Truth Lemma (Lemma 2.19) we have ML,Σ+  Σ.
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2.2 An incomplete but consistent normal modal

logic

We show that there exist consistent normal modal logics that are incomplete

with respect to Kripke semantics. Thomason in [21], 1974, was the first to

show that such a logic existed.1 An (incomplete) version of this proof can be

found in e.g. [8], here we work out and discuss the proof in full details.

To show this we introduce what is usually called the basic temporal lan-

guage, with a similarity type containing two unary diamond modalities. They

are usually denoted by F and P . We stick with this standard notation. Thus

the similarity type for this language is τ = {F, P}.
To construct models for this language we need two binary relations (since

we have two unary modalities) RF and RP . We define RP to be the converse

of RF , that is RP := R−1
F . The duals of F and P are G and H respectively.

That is, G := ¬F¬ and H := ¬P¬.

The Normal Axioms and proof rules are given for both F and P . For

instance we will have as the (K) axioms: G(p → q) → (Gp → Gq) and

H(p→ q)→ (Hp→ Hq). Similarly for Dual and Generalization rule.

The smallest normal modal logic in this language, corresponding to the

frame where RF and RP are converses of each other (as we defined them)

is the smallest normal modal logic augmented withe axioms p → GPp and

p → HFp. This logic is named Kt, and can be shown to be complete with

respect to the class of frames with two converse binary relations.

We will show that there is a logic, namely KtThoM that can be proven

to be consistent, but incomplete, ie. consistent but without any non-empty

class of frames validating its axioms.

We introduce the logic KtTho which is the logic Kt extended with the

1A similar result was obtained independently by Fine [12] and published in the same

issue as Thomason [21]. Thomason mentions this fact in a footnote of his article.
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following three axioms:

(.3F ) Fp ∧ Fq → (F (p ∧ Fq) ∨ F (p ∧ q) ∨ F (Fp ∧ q))

(DF ) Gp→ Fp

(LP ) H(Hp→ p)→ Hp

(.3F ) is valid on frames that are non-branching to the right. So if a frame

F validates (.3F ), then F is non-branching to the right. We show this by

contraposition: if F is branching to the right, then (.3F ) is not valid. Thus

we need to find a model where F is branching to the right and the negation of

(.3F ) is satisfied. We pick RF = {(w, v1), (w, y1), (vi, vi+1), (yi, yi+1)} where

each vi 6= yi 6= w. Such a frame is clearly branching to the right. Then we

choose V such that V (p) = {v1} and V (q) = {y1}. Such a model satisfies

¬(Fp ∧ Fq → (F (p ∧ Fq) ∨ F (p ∧ q) ∨ F (Fp ∧ q))) at w.

w  ¬(Fp ∧ Fq → (F (p ∧ Fq) ∨ F (p ∧ q) ∨ F (Fp ∧ q)))

w  ¬(¬(Fp ∧ Fq) ∨ (F (p ∧ Fq) ∨ F (p ∧ q) ∨ F (Fp ∧ q)))

w  (Fp ∧ Fq) ∧ ¬(F (p ∧ Fq) ∨ F (p ∧ q) ∨ F (Fp ∧ q))

The first part Fp∧Fq of the conjunction is true at w because wRv1 and

p is satisfied at v1, and wRy1 with q satisfied at y1. The second part of the

conjunction is true because:

• it’s not the case that that there is a point seen by w such that p is true

there and that point sees a point where q is true. w sees v1 and p is

true there, but v1 does not see any point where q is true.

• it’s not the case either that there is a point seen by w where both p

and q are true, since v1 6= y1.

• lastly, it’s neither the case that there is a point seen by w where q is

true such that it sees a point where p is true.
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w

v1

p

v2

¬q
...
¬q

y1

q

y2

¬p
...
¬p

We show that (DF ) is valid on right-unbounded frames. We pick and

arbitrary model and point. We have w  Gp → Fp. Thus w  ¬Gp ∨ Fp,
then w  F¬p ∨ Fp. This means that at every state, there is RF -successor

state. Thus any frame validating (DF ) must be right-unbounded.

(LP ) is the Gödel-Löb axiom for P . Forgetting our particular frame for

an instant, it can be shown that the Gödel-Löb axiom is one that guarantees

converse well-foundedness. In other words, given a relation R, it prevents

infinite R-paths. Thus it prevents infinite ascending chains, loops, and re-

flexivity. Coming back to our case, what we are interested in, for reasons

that will become obvious later, is to prevent our frame from having reflexive

points. But we we also want our frame to have right-unboundedness, which

is why we included axiom (DF ). Thus the axioms (D) and (L) in the ba-

sic modal similarity type, respectively �p → �p and �(�p → p) → �p)

can’t be valid on the same frame. But since what we are interested in is to

force irreflexivity, we choose Gödel-Löb for the converse of the relation R (or

RF as we called it). Luckily, we can easily pick modalities and frames that

can help us with this. As we said before, such a frame can be defined with

two modalities, having as corresponding relations, two relations, converses

of each other. Hence, if we give the Gödel-Löb axiom for the modality P ,

we have converse well-foundedness for RP and not RF , thus we can have

(DF ), and right-unboundedness for RF . Since RP and RF are converses of

each other, (LP ) actually forces well-foundedness for RF , which is fine and

is not incompatible with right-unboundedness. However, since what we were
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interested in is the irreflexivity property that the Gödel-Löb axiom provides,

and that irreflexivity defined for RP still holds for RF (and vice versa), then

adding (LP ) is satisfactory for our purpose. We also note that (LP ) forces

RP to be transitive. However this is not crucial for us.

We show that (LP ) implies irreflexivity on our frame. We show by contra-

position that if a frame F is not irreflexive, then F 1 H(Hp→ p)→ Hp. We

pick a non irreflexive frame and give a model where ¬(H(Hp → p) → Hp)

is satisfied. As a model we choose RP = {(w,w)} and V (p) = ∅. We show

that w  ¬(H(Hp → p) → Hp). Then w  ¬(¬H(Hp → p) ∨ Hp), and

w  H(Hp → p) ∧ ¬Hp. Then we get w  H(Hp → p) ∧ F¬p. F¬p is

true at w since V (p) = ∅ and RP = {(w,w)}. From the first part of the

conjunction we have w  Hp → p. Then w  ¬Hp ∨ p, thus w  F¬p ∨ p,
which is clearly true in our model. Hence, (LP ) implies irreflexivity.

We show that KtTho is consistent by giving a frame that validates it.

(N, <,>) is such a frame, where N is the natural numbers and < the lesser

than relation, and > the greater than relation. RF needs to be non-branching

to the right (.3F ), right-unbounded (DF ), and irreflexive, well-founded and

transitive (because of (LP )). We also need RP to be RF ’s converse. Since

< and > are each other’s converses and < has the properties of RF , we can

understand RF as < and RP as >.

We check that the axioms are valid on this frame. The K axioms are

valid on any frame, but we check nonetheless. For any n ∈ N we should have

n  H(p → q) → (Hp → Hq). If n  H(p → q), then ∀m < n,m  p → q.

Thus if ∀m < n,m  p then m  q. But then if n  Hp, we have ∀m < n,

m  p, thus for all m < n,m  q, so we get n  Hq. The argument is similar

for G(p→ q)→ (Gp→ Gq).

We check the validity of axioms p→ GPp and p→ HFp. Interpreted on

our frame, the first axiom says that if p is true at n, then for every m larger

than n, there exists a l smaller than m where p is true. This is obviously
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always true, for instance if n = l. The argument for the second axiom is

similar.

For axiom (.3F ), we need to check that for any n ∈ N, if n  Fp ∧ Fq
then n  F (p ∧ Fq) ∨ F (p ∧ q) ∨ F (Fp ∧ q). If n  Fp ∧ Fq then ∃m > n

such that m  p and ∃l > n such that l  q. But then this makes n 

F (p ∧ Fq) ∨ F (p ∧ q) ∨ F (Fp ∧ q) true because it’s the case that either

n < m < l and then F (p ∧ Fq) is true, or n < m = l in which case F (p ∧ q)
is true, or n < l < m and then F (Fp ∧ q) is true.

The validity of (DF ) is very easy to check. For any n, we have to check

that if n  Gp then n  Fp. Assuming that n  Gp is the case, this means

that ∀m > n,m  p. Since we can always find a l > n, then there exists a

l > n such that l  p, and thus, n  Fp is true.

Finally, we check (LP ). We have to show that for any n ∈ N, if n 

H(Hp → p) is true, then n  Hp should be true, that is, ∀m < n,m  p.

We assume n  H(Hp → p). This is true if ∀m < n,m  Hp → p. This

in turn is true if for any l < m, l  p. If there are some l < m, then each l

satisfies p. But if this is the case then m  Hp is true, and hence m  p. If

there is no such l < m, then m  Hp is vacuously true, hence we also have

m  p. Thus ∀m < n,m  p and hence n  Hp.

We’ve shown that all the axioms of KtTho are valid on (N, <,>). Thus

any model based on this frame satisfies these axioms, and KtTho is consis-

tent.

Lemma 2.21. No frame validates KtThoM.

Proof. KtThoM is the logic KtTho with an additional axiom (M), the McK-

insey axiom, given in the basic temporal language: GFp→ FGp.

Any frame validating KtThoM should also validate KtTho, since a frame

validating KtThoM should validate the axioms of KtTho and (M).

Towards a contradiction we suppose that there exists a frame F such that
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F  KtThoM. If this is the case then we should also have F  KtTho.

We show that we can find a valuation such that F, V  ¬(M), ie. we can

find a model (F, V ) satisfies the negation of the McKinsey axiom : F, V 

¬(GFp → FGp), which would contradict our assumption that there exists

such a F.

Since F  KtTho, we know that we have two accessbility relations con-

verses of each other < and >. We also know that our frame F is right-

unbounded, non-branching to the right, well-founded, transitive and irreflex-

ive. We let F = (W,<,>). We pick any w ∈ W , and we let X = {x ∈
W : w < x}. By the mentioned properties of <, this makes (X,<) a right-

unbounded strict total order. We pick a S ⊆ X such that S and X − S

are cofinal in X. Such a subset S exists. Thus ∀x ∈ X, ∃s ∈ S(x < s)

and ∀x ∈ X, ∃t ∈ X − S(x < t). We choose a V such that V (p) = S. We

show that under this valuation, we can satisfy the negation of the McKinsey

formula, ie. that (F, V ), w  ¬(GFp→ FGp).

We show that if (F, V ), w  GFp, then (F, V ), w  ¬FGp. We assume

that (F, V ), w  GFp. Then, ∀v > w we have (F, V ), v  Fp. Thus ∀v > w,

∃v′ > v, v′  p. Since X is the set of all x such that w < x, then if GFp

is satisfied at w, we have ∀x ∈ X, x  Fp. But since S is cofinal in X,

by cofinality, for any x, we can always find a s ∈ S such that x < s. So

∀x > w, ∃s > x, and since V (p) = S, then ∀x > w, ∃s > x, s  p. Thus

(F, V ), w  GFp is true.

We now show that (F, V ), w  ¬FGp. If that’s the case then w  G¬Gp,
and w  GF¬p. This means that we have to show that ∀x ∈ X, x  F¬p,
that is we have to show that for each x, ∃x′ > x, x′  ¬p. By the cofinality of

X − S, there is such an x′, and since any such x′ 6∈ S = V (p), then x′  ¬p.
We’ve shown that (F, V ), w 1 GFp → FGp, ie. we can satisfy the

negation of (M) in F. Thus F 1 GFp → FGp. But our assumption was

that F validates KtThoM (hence should validate (M) since it is one of the
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axioms), thus we reached a contradiction. No frame validating KtTho can

validate KtThoM. Thus, no frame validates KtThoM.

Lemma 2.22. KtThoM is not inconsistent.

Proof. We show that there exists a model that satisfies the axioms of KtThoM

and that such a model can’t satisfy a formula and its negation. Thus showing

that KtThoM is not inconsistent.

We let (N, <,>) be the same structure we mentioned previously. To it,

we add a set A = {X ⊆ N : X is finite or N − X is finite}, (A is the set

of subsets X of N such that X is finite or X is cofinite), and we restrict

valuations to this set, ie. ∀p ∈ Φ, V (p) ∈ A. We show that (N, <,>,A)

satisfies KtThoM. We’ve already shown that (N, <,>) validates the axioms

of KtTho, so these must be true on (N, <,>,A). It remains to show that

the McKinsey axiom GFp → FGp can be satisfied on this structure. We

show that it is not just satisfiable, but valid on this structure.

We show that for any n ∈ N if (N, <,>,A), V, n  GFp then n  FGp.

We pick any n ∈ N and assume n  GFp. This means that ∀m > n,m  Fp

and ∀m > n, ∃k > m such that k  p. For any such k we have k > n, by the

transitivity of < since n < m < k. Thus we have k  Fp. But then ∃k′ > k,

k′  p. Since such a k′ > n the previous argument can be repeated. (N, <,>)

is right-unbounded, so the argument can be repeated infinitely many times.

This means that p is true in infinitely many points of the model, thus V (p)

can’t be finite, and since we restricted V to A, then V (p) ∈ A thus if V (p)

isn’t finite, it must be cofinite. We now have to show that n  FGp. This

holds if ∃n′ > n, n′  Gp, that is, if ∀l > n′, l  p. By the cofiniteness of

V (p) there is a n′ such that p is satisfied for any l > n′.

We now show that no formula and its negation can be satisfied in (N,
<,>,A). For this purpose we show that A is closed under the boolean

and modal operations. The boolean cases are easy. When ϕ is atomic,
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this is by definition Ṽ (p) = N − Ṽ (¬p). For ¬ϕ this is similar since we

have Ṽ (ϕ) = N − Ṽ (¬ϕ). Hence Ṽ (ϕ) ∩ Ṽ (¬ϕ) = ∅. For ∨ we show that

Ṽ (ϕ ∨ ψ) ∩ Ṽ (¬(ϕ ∨ ψ)) = ∅. By definition Ṽ (ϕ ∨ ψ) = Ṽ (ϕ) ∨ Ṽ (ψ). And

we have Ṽ (¬(ϕ ∨ ψ)) = Ṽ (¬ϕ ∧ ¬ψ) = Ṽ (¬ϕ) ∩ Ṽ (¬ψ) = (N − Ṽ (ϕ)) ∩
(N− Ṽ (ψ)) = N− (Ṽ (ϕ)∪ Ṽ (ψ)). Hence Ṽ (ϕ∨ ψ)∩ Ṽ (¬(ϕ∨ ψ)) = ∅. The

modal case is more interesting. For any � ∈ {F, P} we have to show that

if Ṽ (ϕ) ∈ A then Ṽ ( �ϕ) ∈ A. It is easy to see that if Ṽ (ϕ) is finite then

Ṽ (Fϕ) is cofinite and Ṽ (Pϕ) is finite, so they are both in A as required. If

Ṽ (ϕ) is cofinite then Ṽ (Fϕ) is finite and Ṽ (Pϕ) is cofinite, so they are also

both in A.

Any model based on the structure (N, <,>,A) satisfies GFp→ FGp, and

no such model can satisfy a formula and its negation. Thus this structure

validates the axioms of KtThoM, and hence KtThoM is consistent.

Theorem 2.23. KtThoM is incomplete with respect to any non-empty class

of frames.

Proof. By Lemma 2.22 and Lemma 2.21 we have seen that no class of frames

validates the normal modal logic KtThoM, and yet it is not inconsistent.

Thus, KtThoM is incomplete (both strongly and weakly).

We remark that even though this might seem contradictory with the

statement made in the Canonical Model Theorem (Theorem 2.20), this is

not the case. There is no contradiction simply because we cannot build any

canonical model for KtThoM, since we would need a validating frame for

this purpose. Yet we have just seen (Theorem 2.23) that there is no such

frame.

Corollary 2.24. Not every normal modal logic is complete with respect to a

class of frames.
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The incompleteness of KtThoM with respect to any non empty class of

frames is not trivial. Any logic extending it would also be incomplete. There-

fore this result is not only stating the incompleteness of a single logic with

respect to frames, but states that there exists a large class of normal modal

logics which are incomplete with respect to non-empty classes of frames.

As we have seen in our discussion of KtTho and KtThoM, it is not just

the axioms, but some specific properties (of relations on a set) defined by the

axioms that lead to this result.

By considering modal logic algebraically, we will be able to show more

general completeness results, for instance with algebraic semantics we are

able to obtain a completeness result for every normal modal logic.
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Chapter 3

Algebraic modal logic

In order to view modal logic algebraically, we algebraize modal logic. A

universal method for such algebraization for arbitrary logics can be found in

[1], [2]. For the first-order case see [15]. For the algebraization of modal logic

we refer to [10].

3.1 Modal languages viewed algebraically

We start by showing how any modal language ML(τ,Φ) can be algebraized.

Definition 3.1 (Modal algebraic similarity type). Given a modal sim-

ilarity type τ , the modal algebraic similarity type Sτ is the set of symbols

{¬,∨,⊥,4}4∈τ , each with a fixed arity: ¬ is unary, ∨ is binary, ⊥ is 0-ary

(constant) and each 4 ∈ τ of arity ar(4) ∈ N.

Definition 3.2 (Terms). The algebraic Sτ -terms over a set of variables Φ

is denoted Terτ (Φ).

Hence, the set of Sτ -terms is the same as the set of formulas Fmlτ of a

modal language: Terτ (Φ) = Fmlτ . This is so because we want to consider

modal formulas as terms of algebras.
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To each modal similarity type τ corresponds a class of boolean algebras

with an additional operator for each 4 ∈ τ . These algebras are known as

boolean algebras with operators (or BAO). Given a particular similarity type

τ , we call such algebras: Boolean algebras with τ -operators (or BAτO).

Definition 3.3 (Boolean Algebras with Operators). Give a similarity

type τ , a boolean algebra with τ -operators is an algebra A such that:

A = (A,+,−, 0, f4)4∈τ

where (A,+,−, 0) is a boolean algebra and each f4 is an ar(4)-ary operation

satisfying normality and additivity.

Normality. f is normal if (for some i such that 0 < i ≤ ar(4)):

f4(a1, ..., aar(4)) = 0 (whenver ai = 0)

Additivity. f is additive if for all i such that 0 < i ≤ ar(4):

f4(a1, ..., ai + a′i, ..., aar(4)) = f4(a1, ..., ai, ...aar(4)) + f4(a1, ..., a
′
i, ..., aar(4))

Definition 3.4 (Operators). Given a boolean algebra A, an operation

f : An → A is called an operator if it satifies normality and additivity.

Example 3.5 (BAO for the basic modal similarity type). BAO for the

basic similarity type is an algebra A = (A,+,−, 0, f �) such that (A,+,−, 0)

is a boolean algebra, and f � is unary and satisfies normality and addivity.

Hence:

f �(0) = 0

f �(a+ b) = f �a+ f �b

We denote a BAO for the basic modal similarity type by BAO �
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Remark 3.6. Normal τ -language can be interpreted in boolean algebras with

τ -operators. This can be easily noticed by looking at the axiomatization of

K, different than the one we gave but nonetheless equivalent, given by the

two axioms `K �⊥ ↔ ⊥ and `K �(p ∨ q) ↔ �p ∨ �q and the rule that if

`K ϕ → ψ then `K �ϕ → �ψ, which gives us a glimpse about the normal

and additive behaviour of �. As we will see, this symmetry between boolean

operators and modal operators is quite important. We note that this doesn’t

only hold for unary modalities or operators, however we gave it as an example

to illustrates an important idea that we will discuss thoroughly.

3.2 Algebraic Semantics

We introduce power set algebras, and then expand them to obtain complex

algebras.

Definition 3.7 (Power Set Algebras and Set Algebras). A power set

algebra is the structure

P(A) = (℘(A),∪,−, ∅)

such that ∪ denotes the usual operation of union between two sets. − is

unary and denotes the operation of complementation relative to A. ∅ is the

empty set. From those we can define the union operation ∩ between sets,

and the distinguished element A.

A set algebra is a subalgebra of a power set algebra. The universe of a

set algebra is a subset S of ℘(A) such that ∅ ∈ S, if x, y ∈ S then x∪ y ∈ S,

if x ∈ S then A− x ∈ S.

Without going too much into the theory of propositional algebraic logic,

we note that set algebras provide us with an easy way for understanding

propositional semantics. Elements of the carrier set can be thought of as
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propositional formulas, and set theoretical operations of union and comple-

mentation can be understood as mimicking the logical operations of disjunc-

tion and negation. For instance, say we have two sets x and y in a carrier set

S. The same way we can take any two formulas ϕ and ψ and create a single

formula ϕ∨ ψ, we can make the union of two sets x∪ y. What is interesting

is that we can interpret the logical meaning of ∨ with the union operation.

Given a carrier set ℘(A), we can think of the elements of A as situations

making atomic propositions true or false. If p ∈ a ∈ A, then p is true there,

and false otherwise. Understood like this, an atomic proposition p ⊆ A is

subset of A, ie. an element of the carrier set ℘(A), p = {a ∈ A : p ∈ x}.
Then complex formulas are evaluated using the set theoretical operations of

the algebra. When is p ∨ q true ? In all the situations (sets) inside p ∪ q.
Since set algebras are closed under ∪ and −, every formula can be viewed

as an element of the carrier set. Elements of the algebra can be understood

as valuations. Let’s say we have an x, y, z ∈ ℘(A) such that x = {p, q},
y = {p}, and z = {q, r}. Then x is the assignment that makes p true and

q true. How do we evaluate the truth of complex formulas ? p ∨ q is true

under the assignments p ∪ q. In our example p = {x, y} and q = {x, z}.
If we taking the union of the two we get {x, y} ∪ {x, z} = {x, y, z}. Thus,

under any of these three valuations, the formula p∨ q is true. In such a way

− (complementation relative to A) can be seen as propositional negation ¬,

and ∩ as conjunction. When is p ∧ q true ? When both p and q are true.

When is this the case ? When we have an assignment that makes both p and

q true. The set p ∩ q corresponds to that.

This was just a rough sketch of how propositional logic can be understood

algebraically using set algebras. The theory of algebraic propositional logic

is very rich and the literature abundant. We refer to [19], [11].

Going back to modal logic. We introduce complex algebras, the modal

equivalent of power set algebras. They will let us interpret the propositional
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operations similarly to what we described above, but provide us with the

possibility of adding operations to interpret modalities.

Definition 3.8 (Complex Algebras). Assuming that F = (W,R4)4∈τ is a

frame, then the full complex algebra F+ for this frame is a power set algebra

P(W ) with an additional operations mR4 for each 4 ∈ τ :

F+ := (℘(W ),∪,−, ∅,mR4)4∈τ

Assuming an (n+ 1)-ary relation R on a set W , we define the n-ary map

mR : ℘(W )n −→ ℘(W ) such that

mR(X1, ..., Xn) = {w ∈ W : Rwv1...vn for some v1 ∈ X1, ..., vn ∈ Xn}

A complex algebra is a subalgebra of a full complex algebra. Complex

algebras are set algebras with the mR4 operations added to them. If F is a

class of frames, the class of full complex algebras of frames in F is denoted

by CmF.

What does mR4 correspond to ? It is the set of points that can see at

least a point vi in each subset Xi, for i such that 0 < i ≤ n. This is exactly

how we defined Ṽ (4(ϕ1, ..., ϕn)), if we put Xi for Ṽ (ϕi).

Theorem 3.9. The full complex algebra F+ for a τ -frame F = (W,R4)4∈τ

is a boolean algebra with τ -operators.

Proof. We have to show that the operations mR4 for each 4 ∈ τ are normal

and additive.

For normality we have to show that mR4(X1, ..., Xn) = ∅ if any Xi = ∅
for i such that 0 < i ≤ n. If any Xi = ∅, then there is no vi in Xi such that

Rwv1...vi...vn, thus mR4(X1, ..., Xn) is empty.

For additivity, we have to show that mR4(X1, ..., Xi ∪ X ′i, ..., Xn) =

mR4(X1, ..., Xi, ..., Xn) ∪mR4(X1, ..., X
′
i, ...Xn) which is straightforward by

definition.
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Definition 3.10 (Assignment and meaning functions). Given a boolean

algebra with τ -operators A = (A,+,−, 0, f4)4∈τ and a set of variables Φ,

an assignment is a function α : Φ −→ A. The meaning function is a unique

extension α̃ : Terτ (Φ) −→ A of any assignment function such that :

α̃(p) = α(p), for all p ∈ Φ

α̃(⊥) = 0

α̃(¬t) = −α̃(t)

α̃(t ∨ s) = α̃(t) + α̃(s)

α̃(4(t1, ..., tn)) = f4(α̃(t1), ..., α̃(tn))

We note that this meaning function is very similar to the function Ṽ that

we defined in Chapter 1, which assigned to each formula of the language, the

set of worlds where it is true.

Given an assignment on variables, we can determine the meaning of any

term.

Definition 3.11 (Equations). We denote equations between two algebraic

terms t and s as t ≈ s. An equation t ≈ s is true in an algebra A if ∀α,
α̃(t) = α̃(s), or in words, if the meanings of t and s are the same under every

assignment. If an algebra A makes the equation t ≈ s true, it is denoted by

A � t ≈ s.

Example 3.12 (Complex algebras for the basic similarity type). A

complex algebra for the basic similarity type τ = { �}, is a complex algebra

with one operator mR : ℘(W ) −→ ℘(W ) such that

mR(X) = {w ∈ W : ∃v ∈ W such that Rwv}

Since complex algebras are BAO (Theorem 3.9), mR is normal and additive
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:

mR(∅) = ∅

mR(X ∪ Y ) = mR(X) ∪mR(Y )

Theorem 3.13. Given a similarity type τ , a τ -frame F, formulas ϕ, ψ ∈
Fmlτ , an arbitrary state w in F, and an assignment α, we have :

F, α, w  ϕ iff w ∈ α̃(ϕ) (i)

F  ϕ iff F+ � ϕ ≈ > (ii)

F  ϕ↔ ψ iff F+ � ϕ ≈ ψ (iii)

Proof. (i) We prove by induction on the complexity of ϕ. Boolean cases are

straightforward. If ϕ is of the form 4(ϕ1, ..., ϕn), then F, α, w  4(ϕ1, ...,

ϕn) iff there are vi such that Rwv1...vn and F, α, vi  ϕi, for all i such that

0 < i ≤ n (by the satisfaction definition). By the inductive hypothesis this is

the case iff there are vi such that Rwv1...vn and vi ∈ α̃(ϕi). This means that

w ∈ mR4(α̃(ϕ1), ...., α̃(ϕn)) by the definition of mR4 . The definition of the

meaning function (def. 3.10) states that mR4(α̃(ϕ1), ...., α̃(ϕn)) = α̃(4(ϕ1,

..., ϕn)), thus we have w ∈ α̃(4(ϕ1, ..., ϕn)).

(ii) and (iii) follow directly from (i) and definition 3.11.

Theorem 3.14. Let F be a class of τ -frames, and CmF the class of full

complex algebras of frames in F.

F  ϕ iff CmF � ϕ ≈ >

F  ϕ↔ ψ iff CmF � ϕ ≈ ψ

Proof. By Lemma 3.13.

What the previous theorem tells us is that LF = {t ≈ s : F+ � t ≈ s,

∀F ∈ F}. The logic of a class of frames F is the same as the equational theory

of the class of algebras CmF.
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Without going into the details of the theory of equational classes, we still

wished to state this theorem because it is nice to notice that to each class of

frames corresponds a class of algebras that validate the same formulas.

3.3 Lindenbaum-Tarski Algebras

Definition 3.15. By VΣ we mean the class of BAτO in which the set Σ≈ =

{σ ≈ > : σ ∈ Σ} is valid.

Definition 3.16 (Formula algebra). Let ϕ be a set of propositional vari-

ables and let τ be a modal similarity type. The formula algebra of τ over Φ

is the structure

Form(τ,Φ) = (Form(Φ, τ),+,−, 0, f4)4∈τ

where the operations are defined like so :

0 := ⊥

−ϕ := ¬ϕ

ϕ+ ψ := ϕ ∨ ψ

f4(t1, ..., tn) := 4(t1, ..., tn)

Definition 3.17 (Equivalence relation modulo L). For any normal

modal logic L, we define

ϕ ≡L ψ iff `L ϕ↔ ψ

Theorem 3.18. ≡L is a congruence relation on Form(τ,Φ).

Proof. The boolean cases are straightforward. The modal cases that if ϕi ≡L
ψi then 4(ϕ1, ..., ϕn) ≡L 4(ψ1, ..., ψn) follows from the fact that from `L
ϕi ↔ ψi we can easily deduce `L 4(ϕ1, ..., ϕn)↔4(ψ1, ..., ψn), for all i such

that 0 < i ≤ n.
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Definition 3.19 (Lindenbaum-Tarski Algebras). The Lindenbaum-Tarski

Algebra of L over Φ is the structure :

LL = (Form(τ,Φ)/ ≡L,+,−, 0, f4)4∈τ

where Form(τ,Φ)/ ≡L is the set of equivalence classes under the relation ≡L
and such that :

0 := [⊥]

[ϕ] + [ψ] := [ϕ ∨ ψ]

−[ϕ] := [¬ϕ]

f4([ϕ1], ..., [ϕn]) := [4(ϕ1, ..., ϕn)]

The Lindenbaum-Tarski algebra of a normal modal logic L is the quotient

algebra of the formula algebra over ≡L.

Theorem 3.20. For any normal modal τ -logic L, the Lindenbaum-Tarski

algebra LL(Φ) is a boolean algebra with τ -operators.

Proof. We show that for each 4 ∈ τ , the operation f4 satisfies normality

and additivity.

Normality. We have to show that f4([ϕ1], ..., [ϕn]) = [⊥] whenever any

[ϕi] = [⊥] for i such that 0 < i ≤ n. If we have f4([ϕi], ..., [⊥], ..., [ϕn]), by

definition this is equivalent to [4(ϕ1, ...,⊥, ..., ϕn)]. But since ⊥ can never be

satisfied (by the satisfaction definition), then there is no vi in Rwv1...vi...vn

that satisfies it. Hence 4(ϕ1, ...,⊥, ..., ϕn) can never be satisfied, which is

the definition of ⊥. Hence [4(ϕ1, ...,⊥, ..., ϕn)] = [⊥].

Additivity. For an n-ary f4 we show that for each i we have

f4([ϕ1], . . . , [ϕi] + [ϕ′i], . . . , [ϕn])

=

f4([ϕ1], . . . , [ϕi], . . . , [ϕn]) + f4([ϕ1], . . . , [ϕ′i], . . . , [ϕn])
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To ease notation we write f4(· · · , ψ, · · · ) to denote f4(ϕ1, . . . , ψ, . . . , ϕn).

We have f4(· · · , [ϕi]+[ϕ′i], · · · ) = [4(· · · , ϕi∨ϕ′i, · · · )], by Definition 3.19.

We have

f4(· · · , [ϕi], · · · ) + f4(· · · , [ϕ′i], · · · ) = [4(· · · , ϕi, · · · )] + [4(· · · , ϕ′i, · · · ]

= [4(· · · , ϕi, · · · ) ∨4(· · · , ϕ′i, · · · )]

by Definition 3.19.

Hence we have to show that

[4(· · · , ϕi ∨ ϕ′i, · · · )] = [4(· · · , ϕi, · · · ) ∨4(· · · , ϕ′i, · · · )]

By Definition 3.17, this amounts to show

`L 4(· · · , ϕi ∨ ϕ′i, · · · )↔
(
4(· · · , ϕi, · · · ) ∨4(· · · , ϕ′i, · · · )

)
.

But this is a theorem of every normal modal logic, thus it holds. Actually,

this formula is often chosen to axiomatize K of arbitrary similarity type, in

addition to 4(...,⊥, ...)↔ ⊥.

Theorem 3.21.

LL(Φ) � [ϕ] ≈ [>] iff `L ϕ

Proof. (⇒) We prove by contraposition that if 0L ϕ, then LL(Φ) 2 ϕ ≈
>. We assume that 0L ϕ, which means that [ϕ] 6= [>] by the equivalence

definition 3.17. We pick an assignment

(⇐)

Theorem 3.22. For any normal modal τ -logic, LL(Φ) is a member of the

class of BAτO which validates L.

LL(Φ) ∈ VL

Proof. Direct from theorem 3.21.

57



3.4 The Jónsson-Tarski Theorem

3.4.1 Motivations

So far we’ve shown two important points :

• We can build a boolean algebra with τ operators from any frame (W,

R4)4∈τ (Def. 3.8). The obtained algebra is a complex algebra, which

is a concrete BAO (Theorem 3.9).

• We’ve seen that for any normal modal logic, we can build an abstract

BAO using Lindenbaum-Tarski algebras (Def 3.19, Theorem 3.20).

If we would be able to build a complex algebra from any Lindenbaum-

Tarski algebra of a normal modal logic, then we would have a general com-

pleteness result for any normal modal logic, since we would have correspond-

ing structures for the provability relation (Lindenbaum-Tarski algebras) of a

logic, and for the validity relation (complex algebras).

This is precisely what the Jónsson-Tarski theorem will provide us with:

a representation theorem stating that every Boolean algebra with operators

is isomorphic to a complex algebra.

Thus by theorems 3.13 and 3.21 the algebraic recipe to obtain a com-

pleteness result for any normal modal logic is as follows :

(i) Build the Lindenbaum-Tarski algebra of any normal modal logic (which

is a BAO).

(ii) Build the ultrafilter frame of the Lindenbaum-Tarski algebra.

(iii) Build the complex algebra of the obtained ultrafilter frame: the re-

sulting algebra is the canonical embedding algebra of the Lindenbaum-

Tarski algebra we started with.
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We already know how to perform step (i). The Jónsson-Tarski theorem

guarantees that step (ii) and (iii) can always be done. Hence, by proving the

Jónsson-Tarski theorem we obtain a general completeness result for every

normal modal logic.

3.4.2 The Jónsson-Tarski Theorem and its proof

We show the Jónsson-Tarski theorem in three main steps :

(i) How to build the ultrafilter frame (UfA, Ri)i∈I of an arbitrary Boolean

algebra with operators A :

(a) Building the underlying set UfA of ultrafilters of A

(b) Building the relations Ri on UfA

(ii) Showing that every BAO is embeddable in the full complex algebra of

its ultrafilter frame.

(i)-(a) Let A = (A,+,−, 0, fi)i∈I be an arbitrary Boolean algebra with

operators. We would like to build the set UfA of ultrafilters of A. To build

such a set, considering the stricly boolean part (A,+,−, 0) of A is enough.

The operators fi will be relevant when we need to build the relations on

UfA.

We recall some basic definitions and properties of ultrafilters. An ultrafil-

ter of a boolean algebra (A,+,−, 0) is a subset U ⊆ A such that:1 (i) 1 ∈ U ,

(ii) if a, b ∈ U then a · b ∈ U , (iii) if a ∈ U and a ≤ b then b ∈ U , (iv) 0 6∈ U ,

(v) ∀a ∈ A either a ∈ U or −a ∈ U . A subset of A is a filter if it satisfies

conditions (i) to (iii), a proper filter if it additionally satisfies (iv), and an

1x · y is the standard boolean operation such that x · y = −(−x + −y). Also 1 = −0,

and a ≤ b iff a+ b = b. Let us recall the monotonicity laws for boolean arithmetic as well:

if x ≤ x′ and y ≤ y′ then x + y ≤ x′ + y′ and x · y ≤ x′ · y′ and −x′ ≤ −x. For more

boolean identities and arithmetical laws we refer to [20].
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ultrafilter if it satisfies all of them. We denote the collection of ultrafilters of

A as UfA.

Proposition 3.23 (Ultrafilter Theorem). If P is proper filter of a boolean

algebra A such that for an element a of A, we have a 6∈ P , then there exists

an ultrafilter U extending P such that a 6∈ U .

Proposition 3.24. If U is an ultrafilter of A, then ∀a, b ∈ A, a + b ∈ U iff

a ∈ U or b ∈ U .

Lemma 3.25. We can embed A into the power set of the collection UfA of

ultrafilters of A.

Proof. We need to find an injective homomorphism from A to ℘(UfA). We

let g : A −→ ℘(UfA) be such a map :

g(a) = {U ∈ UfA : a ∈ U}

We need to check two things: that g is a homomorphism, and that it is

injective. We show that g is a homomorphism. We have g(0) = ∅ since no

ultrafilter contains 0 by definition. We have g(−a) = {U ∈ UfA : −a ∈
U} = {U ∈ UfA : a 6∈ U} = −{U ∈ UfA : a ∈ U} = −g(a).

We show that g(a+ b) = g(a) ∪ g(b).

By definition g(a+ b) = {U ∈ UfA : a+ b ∈ U}. By Proposition 3.24 we

have {U ∈ UfA : a + b ∈ U} = {U ∈ UfA : a ∈ U or b ∈ U}. Then we get

{U ∈ UfA : a ∈ U} ∪ {U ∈ UfA : b ∈ U}, which yields g(a) ∪ g(b).

We have to show that f is injective, that is for any elements a, b of A

such that a 6= b we show that g(a) 6= g(b). We assume that a 6= b, then

a 6≤ b. Since a 6= b, by the ultrafilter properties and Theorem 3.23 this

means that ∃U such that a ∈ U , but b 6∈ U . Then U ∈ g(a) but U 6∈ g(b),

thus g(a) 6= g(b).
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(i)-(b) We define relations on the set of ultrafilters UfA to obtain the

ultrafilter frame of a Boolean algebra with operators.

Definition 3.26. Given a similarity type τ and a BAτO A = (A,+,−, 0,
f4)4∈τ , we define an (n+ 1)-ary relation Rf on UfA such that

Rfuu1...un

iff

f(a1, ..., an) ∈ u for all a1 ∈ u1, ..., an ∈ un

Lemma 3.27.

f(a1, ..., an) ∈ u for all a1 ∈ u1, ..., an ∈ un
iff

−f(−a1, ...,−an) ∈ u implies ∃i such that ai ∈ ui

Proof. ⇓ direction: Suppose Rfuu1 . . . un and −f(−a1, . . . ,−an) ∈ u. We

have to show that there is i such that ai ∈ ui. For if not, for all i we

have ai /∈ ui which amounts to −ai ∈ ui. Then, by Rfuu1 . . . un we obtain

f(−a1, . . . ,−an) ∈ u which contradicts to −f(−a1, . . . ,−an) ∈ u.

For the other direction, suppose that whenever −f(−a1, . . . ,−an) ∈ u is

the case, we have ai ∈ ui for some i. We have to show for that if ai ∈ ui holds

for all i, then f(a1, . . . , an). Pick arbitrary elements ai ∈ ui and, by way of

contradiction, suppose f(a1, . . . , an) /∈ u. Then −f(a1, . . . , an) ∈ u, whence

by our assumption it follows that −ai ∈ ui. This is a clear contradiction.

The frame (UfA, Rf4)4∈τ is the ultrafilter frame of the BAO A. The

complex algebra (UfA, Rf4)+
4∈τ of an ultrafilter frame is called the canonical

embedding algebra of A and we denote it by EmA

(ii) Now that we know how to build the ultrafilter frame of an arbitrary

Boolean algebra with operators, we are ready to prove the Jónsson-Tarski

theorem.
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In what follows we prove a version of the celebrated Jónsson-Tarski The-

orem [17], [18].

Theorem 3.28 (Jónsson-Tarski Theorem). Every Boolean algebra with

operators is embeddable in the full complex algebra of its ultrafilter frame.

Given a modal similarity type τ and a Boolean algebra with τ -operators A =

(A,+,−, 0, f4)4∈τ , we can embed A into EmA.

Proof. By Lemma 3.25 the function g : A −→ ℘(UfA)

g(a) = {U ∈ UfA : a ∈ U}

was shown to be a boolean embedding of a boolean algebra into the power

set algebra of UfA, ie. it is an injective homomorphism that preserves the

boolean operations. We keep the same map, and show that g preserves the

modal operations. We have to show for all f4 that

g(f4(a1, ..., an)) = mRf4
(g(a1), ..., g(an))

We prove by induction on the arity of f . It is good to keep in mind that :

u ∈ g(a) iff a ∈ u

Base case: f is unary (this would be a boolean operator corresponding

to a diamond modal operator). We have to show that g(f(a)) = mRf
(g(a)).

We prove that mRf
(g(a)) ⊆ g(f(a)). If u ∈ mRf

(g(a)), then ∃u1 ∈ g(a) and

Rfuu1, by definition of mRf
. This means that a ∈ u1 and f(a) ∈ u, thus

u ∈ g(f(a)), as we wanted.

We check that g(f(a)) ⊆ mRf
(g(a)). If u ∈ g(f(a)), then we must

show that u ∈ mRf
(g(a)). To do so, we need to find a u1 with Rfuu1

and u1 ∈ g(a). We want to have in u1 all the elements that should be in

there by Rfuu1. Since u ∈ g(f(a)) is equivalent to f(a) ∈ u, by Lemma

3.27 we have that for any element if −f(−b) ∈ u, then b ∈ u1 (given the
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relation Rfuu1). This will help us to put in u1 all the elements that should

be there. We can note that what we are doing is actually mimicking a boxed

operator (note the similarity �ϕ, ¬�¬ϕ, and f(a),−f(−a)). So, we define

the set X = {b ∈ A : −f(−b) ∈ u}. We need to show that ∃u1 such that2

X ∪ {a} ⊆ u1. By the ultrafilter theorem (Theorem 3.23), it is enough to

show that X ∪ {a} is a proper filter. We show that X ∪ {a} is closed under

· the meet operation. By the definition of · and the additivity axiom we get

for any x, y ∈ X, f(x ·y) = −f(−x+−y) = −(−f(x)+−f(y)) = f(x) ·f(y).

We can show that X ∪{a} is closed under meet by showing that a ·x 6= 0 for

any x ∈ X. Towards a contradiction we assume that there is an x ∈ X such

that a · x = 0. This gives us that a ≤ −x, then f(a) ≤ f(−x). But then

f(−x) ∈ u, contradicting x ∈ X, since x ∈ X if −f(−x) ∈ u by definition.

We show that a 6= 0. By normality we have f(0) = 0. Since f(a) ∈ u, we

can’t have a = 0 otherwise we would have f(0) = 0 ∈ u, and 0 can’t be in

u. Thus X ∪ {a} is a proper filter and by the Ultrafilter Theorem we can

extend it to an ultrafilter u1. Hence Rfuu1 holds, since, by definition of X

and of Rfuu1 (Lem. 3.27) we have that if −f(−x) ∈ u then x ∈ X ⊆ u1.

General case: We prove for arbitrary cases of arbitrary arity n. By

the induction hypothesis, we assume that it holds for n. The case for the

direction mRf
(g(a1), ..., g(an+1)) ⊆ g(f(a1, ..., an+1)) is the same as the base

case.

For the other direction we have to check that g(f(a1, ..., an+1)) ⊆ mRf
(g(a1),

..., g(an+1)). For f(a1, ..., an+1) ∈ u we have to find u1, ..., un+1 such that

Rfuu1...un+1 and ai ∈ ui for all i such that 0 < i ≤ n+1. We let f ′ : An −→ A

such that f ′(x1, ..., xn) = f(x1, ..., xn, an+1). By the normality and additivity

2For the sake of clarity, but forgetting formal rigour, what has been said could be

(incorrectly) rephrased as X = {b ∈ A : �b ∈ u} ⊆ u1, which might help understand why

this is guaranteed by the relation Ruu1, if we have in mind the satisfaction definition for

the common basic modal language.
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of f ′, and the induction hypothesis we have f ′(a1, ..., an) ∈ u, thus we have

u1, ..., un such that ai ∈ ui (for 0 < i ≤ n). Thus by the definition of f ′ we

get that f(x1, ..., xn, an+1) ∈ u whenever xi ∈ ui. We need to find a un+1

such that Rfuu1...un+1 and an+1 ∈ un+1. Similarly to the argument for the

base case we build a set X ∪ {an+1} and show that it can be extended to an

ultrafilter un+1. By Lemma 3.27 we have Rfuu1...un+1 iff ∀xi, y, if xi ∈ ui,
then −f(x1, ..., xn,−y) ∈ u implies y ∈ un+1. Then, similarly to the base

case we set X = {y ∈ A : ∃x1 ∈ u1, ..., xn ∈ un(−f(x1, ..., xn,−y) ∈ u)}.
All that remains is to show that X ∪ {an+1} is a proper filter, which by the

Ultrafilter theorem 3.23, would let us extend it to the ultrafilter un+1 that

we need. Hence, the last step is to show that X ∪ {an+1} is closed under ·
meet. We start by showing that X is closed under meet, ie. that −f(x′1x

′′
1,

..., x′nx
′′
n,−(y′y′′)) ∈ u (in accordance with the definition of X). We have

f(x′1x
′′
1, ..., x

′
nx
′′
n,−y′) ≤ f(x′1, ..., x

′
n,−y′). By monotonity we get −f(x′1, ...,

x′n,−y′) ≤ −f(x′1x
′′
1, ..., x

′
nx
′′
n,−y′). By the upward closedness of u (since it is

a filter) and our assumption, then −f(x′1, ..., x
′
n,−y′) ∈ u yields −f(x′1x

′′
1, ...,

x′nx
′′
n,−y′) ∈ u. Similary we get −f(x′1x

′′
1, ..., x

′
nx
′′
n,−y′′) ∈ u. The following

equalities hold

f(x′1x
′′
1, ..., x

′
nx
′′
n,−(y′y′′)) = f(x′1x

′′
1, ..., x

′
nx
′′
n,−y′ +−y′′) (3.1)

= f(x′1x
′′
1, ..., x

′
nx
′′
n,−y′) + f(x′1x

′′
1, ..., x

′
nx
′′
n,−y′′)

(3.2)

where (3.1) holds by definition of meet, and (3.2) holds by additivity. Hence

−f(x′1x
′′
1, ..., x

′
nx
′′
n,−(y′y′′))

=

−(f(x′1x
′′
1, ..., x

′
nx
′′
n,−y′) + f(x′1x

′′
1, ..., x

′
nx
′′
n,−y′′))

= (3.3)

−f(x′1x
′′
1, ..., x

′
nx
′′
n,−y′) · −f(x′1x

′′
1, ..., x

′
nx
′′
n,−y′′) (3.4)
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where the equality (3.3) holds by the De Morgan’s laws. (3.4) shows that X

is closed under meet, hence −f(x′1x
′′
1, ..., x

′
nx
′′
n,−(y′y′′)) ∈ u as we wanted.

It is left for us to show that X ∪ {an+1} is closed under meet. Similarly

to the base case, this means that we have to show that an+1 · y 6= 0 for any

y ∈ X. Towards a contradiction we assume that there is a y ∈ X such that

an+1 · y = 0. Then we get an+1 ≤ −y, hence by monotonicity f(x′1x
′′
1, ...,

x′nx
′′
n, an+1) ≤ f(x′1x

′′
1, ...x

′
nx
′′
n,−y). Then −f(x′1x

′′
1, ..., x

′
nx
′′
n,−y) ≤ −f(x′1x

′′
1,

...x′nx
′′
n, an+1), which yields by definition of X and upward closedness that

−f(x′1x
′′
1, ...x

′
nx
′′
n, an+1) ∈ u. But this means that −an+1 ∈ un+1 which is not

possible, hence we reach a contradiction. X ∪ {an+1} is closed under meet,

which means that it can be extended to an ultrafilter un+1. This concludes

the proof of the Jónsson-Tarski theorem.

A short remark is in order here to show that not every Boolean algebra

with operators is isomorphic to a full power set algebra. For example, take

B = {X ⊆ N : X is finite or cofinite} with the usual operations. Define

�X = ∅ if X is finite, and �X = N if X is cofinite. Then � is normal and

additive, therefore we obtain a BAO. To see that it is not isomorphic to a

full power set algebra, observe that in full power set algebras every subset

has a least upper bound which is not the case with B.
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Conclusion

We’ve seen that although intuitive and very useful, Kripke semantics are

inherently limited since they are unable to provide positive completeness re-

sults for a large family of normal modal logics. However, as we have seen, this

limitation can be healed with the help of algebraic tools. The Jónsson-Tarski

Theorem plays the key role in this respect. With it, we have a completeness

result for any normal modal logic of arbitrary similarity type. As we’ve seen,

algebraic logic provides us with tools to build the Lindenbaum-Tarski al-

gebra of any normal modal logic. As it turns out, the Lindenbaum-Tarski

algebra of a normal modal logic is a Boolean algebra with operators. What

the Jónsson-Tarski Theorem states is that any BAO is isomorphic to a full

complex algebra. In this sense, it is a generalization of Stone’s Theorem.

What it does more precisely for us is that it shows us how to build a specific

frame (the ultrafilter frame) from the starting Lindenbaum-Tarski algebra.

Then we can turn this ultrafilter frame into a complex algebra, isomorphic to

the starting Lindenbaum-Tarski algebra. The required syntactic conditions

are guaranteed by the starting Lindenbaum-Tarksi algebra, and the structure

that lets us interpret the logic semantically, is the corresponding complex al-

gebra (or canonical embedding algebra). The isomorphism between the two

structures is what guarantees positive completeness and soundness results.
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[1] Andréka, H., Németi, I. and Sain, I., Universal algebraic logic. In prepa-

ration, 2011.
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