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1 Introduction

According to Chaitin (1995), Gödel once told him “it doesnt matter which

paradox you use [to prove the first incompleteness theorem]”. However, there is

no proof that for every (logical) paradox there is a corresponding undecidable

sentence in Peano arithmetic. Therefore it is worth to investigate what will

happen if we formalize paradoxes in Peano arithmetic.

We begin by presenting a proof of the Gödel’s first incompleteness theorem,

then a proof of Löb’s theorem and the Second Incompleteness Theorem.

After that, we investigate what happens when formalizing the paradoxes to

obtain undecidable sentences. The first two are Grelling’s paradox and Curry’s

paradox, which are not difficult to formalize and the resulting undecidable sen-

tences are not really different from Gödel’s one.

Then we turn to the Berry paradox. There are already two proofs of the

first incompleteness theorem involving this paradox in the literature, one is from

Gregory Chaitin, another one is from George Boolos.

The fourth paradox is the Yablo’s paradox, a paradox about an infinite

sequence of sentences. Starting from this section, we use a generalized version

of the Diagonal Lemma heavily.

Three interrelated paradoxes follow, I developed them from the preface para-

dox, but they are significantly different from it. The first two of them have both

an infinite and finite version, while the third one is paradoxical mainly in the

infinite case.

The last paradox discussed in this paper is the surprise examination para-

dox. An infinite version of this paradox proposed by Sorensen, called the earliest

class inspection paradox, is also discussed. We first have a look in the formal-

ization of the surprise examination paradox by Frederic Fitch, from which he

concluded that the surprise examination paradox is not a real paradox but only

self-contradictory. Then I give my own formalization of both the infinite and

finite version of the paradox, showing that Fitch’s claim is not entirely justified.

Finally there are some remarks concerning what is done in this thesis and

how should we interpret the results.
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2 A Proof of Gödel Incompleteness Theorems

In this paper, we will work in a formal system called T. The main idea of the

proof presented here is from Gödel (1992), which is an English translation form

Gödel’s classic 1931 paper, Smith (2007), and Smullyan (1992).

2.1 Syntax

“The details of an encoding are fascinating to work out and boring

to read. The author wrote the present section for his own benefit

and his feelings will not be hurt if the reader chooses to skip it.”

(Smoryński, 1977, p.829)

Symbols

• logical symbols: ∀,¬,→, (, ) ,=;

• infinitely many variable symbols: vi, for i ∈ N;

• an unary function symbol S;

• two binary function symbols +,×;

• a constant symbol: 0.

Abbreviations

For readability, in the rest of this proof the following abbreviations may be used

(x, y, z are variables):

• (ϕ ∨ ψ) for (¬ϕ→ ψ)

• (ϕ ∧ ψ) for ¬(¬ϕ ∨ ¬ψ)

• (ϕ↔ ψ) for ((ϕ→ ψ) ∧ (ψ → ϕ))

• ∃x(ϕ) for ¬∀x(¬ϕ)

• Sx for S(x)

• x+ y for + (x, y)

• x× y for × (x, y)

2



• 1 for S0, 2 for S1, 3 for S2, etc.

• x ≤ y for ∃z (x+ z = y)

• x < y for (x ≤ y) ∧ ¬(x = y)

• x ≤ y ≤ z for (x ≤ y) ∧ (y ≤ z), similarly we will write x < y ≤ z,

x ≤ y = z etc.

• (∀x ≤ t)ϕ for ∀x ((x ≤ t)→ ϕ), where t is a term.

• (∃x ≤ t)ϕ for ∃x ((x ≤ t) ∧ ϕ), where t is a term.

• (µx < t)ϕ(x) = t′ for [(t′ < t) ∧ ϕ(t′) ∧ ∀z (ϕ(z)→ t′ ≤ z)]∨[(∀z < t)¬ϕ(z)∧

(t′ = t)], where t and t′ are terms.

We will also abbreviate variables by single letters, e.g. x, y, z, w, u, v, n etc.

When there are different letters in a formula, it is always assumed that they are

abbreviation of different variables.

When there is no ambiguity, brackets maybe skipped, e.g.¬0 = 1 instead of

¬(0 = 1). Also, different kinds of brackets like [, ] and {, } may be used instead

of (, ) to make formulas more readable.

Terms

An expression is a term if it belongs to the following recursively defined set of

expressions:

T1 0 is a term.

T2 Every variable vi is a term.

T3 If t1, t2 are terms, then so are St1, (t1 + t2), and (t1 × t2).

T4 No other expressions are terms.

A term is a closed term if it contains no variables.
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Formulas

An expression is an atomic formula if it is of the form t1 = t2, where t1 and t2

are terms.

An expression is a formula if it belongs to the following recursively defined

set of expressions:

F1 Every atomic formula is a formula.

F2 If ϕ and ψ are formulas, then ¬ϕ and (ϕ→ ψ) are both formulas.

F3 If ϕ is a formula and vi a variable, then ∀viϕ is a formula.

F4 No other expressions are formulas.

Free and bounded variables

Let vi be a variable. We define free and bounded variables in formulas by the

following rules:

1. For any atomic formula ϕ, vi is a free variable in ϕ if and only if it occurs

in ϕ. No variables are bounded variables in any atomic formula.

2. For any formulas ϕ, vi is a bounded variable in ∀viϕ.

3. For any formulas ϕ and ψ, vi is a free variable in (ϕ → ψ) if and only if

it is a free variable in ϕ or ψ; vi is a free variable in ¬ϕ if and only if it is

a free variable in ϕ.

4. For any formulas ϕ and ψ, vi is a bounded variable in (ϕ→ ψ) if and only

if it is a bounded variable in ϕ or ψ; vi is a bounded variable in ¬ϕ if and

only if it is a bounded variable in ϕ.

5. For i 6= j and any formula ϕ, vi is a free variable in ∀vjϕ if and only if it

is a free variable in ϕ.

Sometimes we may write “vi is free in ϕ” for “vi is a free variable in ϕ”. A

variable vi can be both free and bounded in a formula. If vi is free in a formula

ϕ, the free occurrences of vi in ϕ are the occurrences of vi such that vi is free

in ϕ. Bounded occurrences of a variable in a formula is defined similarly.

A sentence is a formula that has no free variable.
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Substitutions

Let t be a term, vi a variable and ϕ a formula. t is free for vi in ϕ if no free

occurrence of vi in ϕ is within the scope of a quantifier ∀vj where vj is any

variable occurring in t.

If t is a term and vi is a variable, ϕ(t/vi) is the formula formed by replacing

every free occurrences of vi by t. If ϕ has only one variable x, then we may

write ϕ(t) instead of ϕ(t/x).

2.2 Axioms and inference rules

Axiom schemata for First-order logic

1. (ϕ→ (ψ → ϕ))

2. ((ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ)))

3. ((¬ψ → ¬ϕ)→ (ϕ→ ψ))

4. ∀viϕ→ ϕ(t/vi), where t is a term and free for vi in ϕ.

5. ∀vi (vi = vi)

6. (t = t′) → (ϕ→ ϕ(t//t′)) where t, t′ are terms, ϕ(t//t′) is a formula

obtained by substituting an occurrence of t by t′, and t is not in the scope

of any quantifier ∀vj where vj is a variable in t′ but not in t.

Inference Rules

MP From ϕ and (ϕ→ ψ) infer ψ.

∀-Intro From ϕ→ ψ infer ϕ→ ∀xψ if x is not free in ϕ.

Axioms for arithmetic

7. ∀v0 (¬Sv0 = 0)

8. ∀v0∀v1(Sv0 = Sv1 → v0 = v1)

9. ∀v0 (v0 + 0 = 0)

10. ∀v0∀v1 (v0 + Sv1 = S(v0 + v1))
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11. ∀v0(v0 × 0 = 0)

12. ∀v0∀v1 (v0 × Sv1 = (v0 × v1) + v0)

13. For every formula ϕ(vi) with one free variable vi, the following formula is

an axiom: (ϕ(0) ∧ ∀vi (ϕ(vi)→ ϕ(Svi)))→ ∀vi(ϕ(vi))

2.3 Proofs and theorems

A sequence of formulas is a proof if every formula in this sequence is either an

axiom, an instance of an axiom schema, or obtained by applying an inference

rule to some formulas occurring before it.

A formula is a theorem if it is in a proof. A proof of a formula ϕ is a proof

that ends with ϕ. A formula is said to be derivable, or provable, denoted by

` ϕ, if it is a theorem. A formula ϕ is refutable if the negation of the formula,

¬ϕ is provable. A formula is decidable if it is either provable or refutable, and

undecidable if it is neither provable nor refutable.

2.4 Gödel numbering

We now define assign each expression E to a unique natural number pEq, which

is called the Gödel number of E.

First we define it for all basic symbols:

p0q = 1, pSq = 3, p¬q = 5, p→q = 7, p∀q = 9, p(q = 11, p)q = 13,

p+q = 15, p×q = 17, pviq = 19i+1 where i ∈ N, p=q = 21

For every finite sequence of numbers e1, e2, . . . en we encode the sequence

into the number:

n∏
i=1

pei+1
i = 2e1+1 × 3e2+1 × . . .× pen+1

n

where pi is the ith prime number.

We call this the code number of the sequence e1, e2, . . . en. By the fundamen-

tal theorem of arithmetic, every finite sequence corresponds to a unique code

number.

If x is the code number of a sequence s, we will say s is represented by x or

x represents s.

6



Since an expression is a finite sequence of symbols and each symbol corre-

sponds to a number, every expression corresponds to a finite sequence of number.

The code number of an expression is called the Gödel number of it. For example,

an expression with n symbols, α1, α2, . . . , αn with Gödel numbers a1, a2, . . . , an

respectively, corresponds to the following Gödel number:

n∏
i=1

pai+1
i = 2a1+1 × 3a2+1 × . . .× pan+1

n

Similarly, the Gödel number of a sequence of expressions (for example, a

proof) is the code number of the sequence of Gödel numbers of those expres-

sions in the original order. We will denote the Gödel number of the sequence

s1, s2, . . . sn as ps1, s2, . . . snq, which is 2ps1q+1 × 3ps2q+1 × . . .× ppsnq+1
n .

2.5 Primitive recursive functions and relations

We now recursively define the class of primitive recursive functions:

PR1 The zero function, Z(x) = 0 for any x, is primitive recursive.

PR2 The successor function S(x) is primitive recursive.

PR3 For any natural numbers i, n such that 0 ≤ i < n, the projection function

Pn
i (x0, x1, . . . , xn−1) = xi is primitive recursive.

PR4 If G(x0, x1, . . . , xm−1), H0(x0, x1, . . . , xn−1), H1(x0, x1, . . . , xn−1), . . . ,

Hm−1(x0, x1, . . . , xn−1) are primitive functions, then F (x0, x1, . . . , xn−1)

= G(H0(x0, x1, . . . , xn−1), H1(x0, x1, . . . , xn−1), . . . , Hm−1(x0, x1, . . . , xn−1))

is also a primitive recursive function.

PR5 IfG(x1, . . . , xn), H(x0, x1, . . . , xn) are primitive functions, then F (x0, x1, . . . , xn)

defined by the following recursion is also a primitive recursive function: F (0, x1, . . . , xn) = G(x1, . . . , xn)

F (S(x), x1, . . . , xn) = H(F (x, x1, . . . , xn), x1, . . . , xn)

PR6 Only functions obtained from the above rules, i.e. from PR1 to PR5,

are primitive recursive functions.
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A n-ary relationR is primitive recursive if its characteristic function χR(x0, x1, . . . , xn−1)

is primitive recursive.

It is well known that the class of primitive relations is closed under sub-

stitution by primitive recursive functions, conjunction, disjunction, negation,

bounded quantification and bounded minimization.

In other words, if R,R′ are n-ary relations, S is an (n + 1)-ary relation,

f0, f1, . . . , fn−1 are m-ary functions, g is an n+ 1-ary functions, and all of them

are primitive recursive, then:

1. R(f0(x0, x1, . . . , xm−1), f1(x0, x1, . . . , xm−1), . . . , fn−1(x0, x1, . . . , xm−1)) is

an m-ary primitive recursive relation.

2. R(x0, x1, . . . , xn−1) ∧ R′(x0, x1, . . . , xn−1) is an n-ary primitive recursive

relation.

3. R(x0, x1, . . . , xn−1) ∨ R′(x0, x1, . . . , xn−1) is an n-ary primitive recursive

relation.

4. ¬R(x0, x1, . . . , xn−1) is an n-ary primitive recursive relation.

5. (∀y ≤ x0)S(y, x1, . . . , xn) is an (n+ 1)-ary primitive recursive relation.

6. (∃y ≤ x0)S(y, x1, . . . , xn) is an (n+ 1)-ary primitive recursive relation.

7. The (n + 1)-ary function f(x0, x1, . . . , xn) defined by f(x0, x1, . . . , xn) =

(µy < x0)S(y, x1, . . . , xn) is primitive recursive.

8. The (n + 1)-ary function f(x0, x1, . . . , xn) defined by f(x0, x1, . . . , xn) =

(µy < g(x0, x1, . . . , xn))S(y, x1, . . . , xn) is primitive recursive.

It is also well known that x+ y, x× y are primitive recursive functions, and

x ≤ y, x = y are primitive recursive relations.

The proofs of the above results can be found in Smoryński (1991).

2.6 Pseudo-terms

Since we have only three function symbols S,+ and ×, all terms are construct

by them and the only constant symbol 0. However in the following we will define

some new “functions”, for example Pr(n), and use them as a function.
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To make things precise, please note that those “terms” such as 25, P r(3), R(9)

are not real terms, but pseudo-terms, which are defined by the following:

Let F (x, y) abbreviates the formula F (x0, x1, . . . xn−1, y) with n free vari-

ables x0, x1, . . . , xn−1, y. F (x, y) is a pseudo-term with respect to the variable

y if the formula

∀x0∀x1 . . . ∀xn−1∃y
[
F (x, y) ∧ ∀z

(
F (x, z)→ y = z

)]
is provable.

When we write something like f(x) = y, it should be understood as “there

is a formula F (x, y) which is a pseudo-term”. Also when we are using pseudo-

terms, for example in the form ϕ
(
f(x)

)
where ϕ(x) is an open formula with

one variable, it should be read as ∃y
(
ϕ(y) ∧ f(x) = y

)
. But we will skip all the

proofs that there are such pseudo-terms.

2.7 β-function and primitive recursion

An n-place function b(x1, . . . xn−1, y) is called a β-function if for each finite

sequence of natural numbers k0, k1, . . . , km there are numbers c0, c1, . . . , cn−1

such that for every i ≤ m, b(c0, c1, . . . , cn−1, i) = ki.

From Gödel (1992), we know there is a ternary β-function β(x, y, z). To

define the corresponding relation, we need only bounded quantification, a proof

can be found in Smith (2007).

The existence of a β-function ensures that we can encode and decode finite

sequences by numbers, this helps us to define functions (which should be pseudo-

terms) obtained from primitive recursion in the object language.

For example, we can define the exponentiation in the following way:

exp(x, y, z)↔ ∃c∃d
[
β(c, d, 0) = S0∧(∀u < y)

(
β(c, d, Su) = x×β(c, d, u)

)
∧β(c, d, y) = z

]
The idea is that, to say xy = z, we can describe the existence of a sequence

1, x, x2, . . . , xy, where the first term is 1 and each later term is the previous term

multiplied by x, and the y + 1st term is z.

2.8 Some primitive recursive relations and functions

Now we can define the following functions and relations. To make the formulas

slightly more understandable, below each formula there is a short description of

9



it.

1. y | x←→ (∃z ≤ x) (x× z = y)

y divides x, or equivalently x is divisible by y.

2. x0 = S0

xSy = x× xy

xy is the exponential function.

3. Prime(x)←→ (∀y ≤ x) (y | x→ (y = 1 ∨ y = x))

x is a prime number.

4. Pr(0) = 0

Pr(Sk) =
(
µy ≤ (Pr(k) + Pr(k))

)
Prime(y)

Pr(k) is the nth prime number.1

5. Code(x)←→ (∀y ≤ x) ((y 6= 1 ∧ Pr(Sy) | x)→ Pr(y) | x)

x is a code number.

6. l(x) = (µy ≤ x)
(
Code(x) ∧ (Pr(y) | x) ∧ ¬(Pr(Sy) | x)

)
If x is a code number, then its length is l(x).

7. Dec(n, x) = (µy ≤ x)
(
Code(x) ∧ Pr(n)Sy | x ∧ ¬(Pr(n)SSy | x)

)
If x is the code number of a sequence, Dec(n, x) is the nth term in that

sequence.

8. x ? y =
[
µz ≤ [Pr(l(x) + l(y))]x+y

]{
Code(x) ∧ Code(y) ∧ (∀n ≤ l(x))

[Dec(n, z) = Dec(n, x)] ∧ (∀n ≤ l(y)) [Dec(n+ l(x), z) = Dec(n, y)]
}

For code numbers x and y, x ? y is a code number with length l(x) + l(y)

and the first l(x) indices are the same as x, the rest are the same as y

(in the same order). This is used to represent the concatenation of two

expressions.

9. Part(y, x)←→ Code(x) ∧ Code(y) ∧ (∃u ≤ x)(∃v ≤ x)(x = u ? y ? v)

y represent a sequence which is a part of the sequence represented by x.

1On the bound of y: By Bertrand’s Postulate (or called Chebyshev’s theorem), for every

number n > 1, there is a prime number p such that n < p < 2p, hence we have the inequality

pn < pn+1 < pn + pn.
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10. R(x) = 2Sx

R(x) is the code number of a sequence with only one number x.

11. E(x) = (R(11) ? x) ? R(13)

Given that x is the code number of a finite sequence, E(x) corresponds to

the code number of a sequence with 11 at the beginning, 13 at the end,

and the sequence encoded by x in between. If x is a Gödel number of an

expression, then E(x) is the Gödel number of the expression added a pair

of brackets.

12. V ar(x)←→ (∀y ≤ x) (y | x→ 19 | y)

x is the Gödel number of a variable.

13. Neg(x) = R(5) ? x

If x is the Gödel number of a formula ϕ, Neg(x) is the Gödel number of

the formula ¬ϕ.

14. Imp(x, y) = E(x ? R(7) ? y)

If x = pϕq, y = pψq, then Imp(x, y) = p(ϕ→ ψ)q.

15. Dis(x, y) = Imp(Neg(x), y)

If x = pϕq, y = pψq, then Dis(x, y) = pϕ ∨ ψq.

16. Con(x, y) = Neg(Dis(Neg(x), Neg(y)))

If x = pϕq, y = pψq, then Con(x, y) = pϕ ∧ ψq.

17. Gen(x, y) = (R(9) ? R(x)) ? E(y)

If x = pviq for some variable vi and y = pϕq, then Gen(x, y) = p∀vi(ϕ)q.

18. N(0) = 1;N(Sn) = R(3) ? E(N(n))

N(n) = pnq for every number n.

19. transt(x, y, z) ←→
(
x = R(3) ? E(y)

)
∨
(
x = E(y ? R(15) ? z)

)
∨
(
x =

E(y ? R(17) ? z)
)

If y and z are Gödel numbers of terms and transt(x, y, z) is provable,

then x is the Gödel number of a term formed according to the terms

transformation rule (T3).
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20. Seqt(x)←→
(
∀y ≤ l(x)

)[(
Dec(y, x) = 1

)
∨ V ar

(
Dec(y, x)

)
∨

(∃z ≤ y)(∃w ≤ y)
[
transt

(
Dec(y, x), Dec(z, x), Dec(w, x)

)]]
x is the Gödel number of a sequence of expressions which represents the

formation of a term.

21. Term(x)←→
[
∃y ≤

[
Pr
(
l(x)

)]x×l(x)](
Seqt(y) ∧Dec(l(y), y) = x

)
x is the Gödel number of a term. 2

22. Atf(x)←→ (∃y ≤ x) (∃z ≤ x) [x = (y ? R(21)) ? z]

x is the Gödel number of an atomic formula.

23. transf(x, y, z)←→
(
x = Neg(y)

)
∨
(
x = Imp(y, z)

)
∨ (∃v ≤ x)

(
V ar(v)∧

x = Gen(v, y)
)

If y and z are Gödel numbers of formulas and transt(x, y, z) is provable,

then x is the Gödel number of a formula formed according to the formula

transformation rules (F2) and (F3).

24. Seqf(x)←→
(
∀y ≤ l(x)

)[
Atf

(
Dec(y, x)

)
∨ (∃z ≤ y)(∃w ≤ y)[

transf
(
Dec(y, x), Dec(z, x), Dec(w, x)

)]]
x is the Gödel number of a sequence of expressions which represents the

formation of a formula.

25. Form(x)←→
[
∃y ≤

[
Pr
(
l(x)

)]x×l(x)](
Seqf(y) ∧Dec(l(y), y) = x

)
x is the Gödel number of a formula.3

26. Sbf(y, x)←→ Form(x) ∧ Form(y) ∧ Part(y, x)

y represents a subformula of the formula represented by x.

27. Bdd(x, n, v)←→ V ar(v) ∧ Form(x) ∧ (∃y ≤ x)(∃z ≤ x)(∃w ≤ x)[
(x = y?Gen(v, z)?w)∧Form(z)∧

(
l(y)+1

)
≤ n ≤

(
l(y)+ l(Gen(v, z))

)]
v is the Gödel number of a variable which is bounded at the nth place in

the formula having the Gödel number x.

2On the upper bound of y: Let x be the Gödel number of a term t, l(x) = n means there are

n symbols in the expression t. By induction on the formation of a term, we can prove that we

need at most n steps to form the term t. Hence the corresponding sequence has length at most

n, let it be t1, t2, . . . , tn, where tn = t. Every ti(0 < i ≤ n) is a part of t, therefore for every

0 < i ≤ n, ptiq ≤ ptq = x. This leads to the result that pt0, t1, . . . , tnq ≤ pt, t, . . . tq ≤
(
pptqn

)n
,

which is the upper bound of y in the above formula.
3On the upper bound of y: similar to the definition of Term(x), cf. footnote 2.
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28. Fr(x, n, v)←→ V ar(v) ∧ Form(x) ∧
(
Dec(n, x) = v

)
∧(

n ≤ l(x)
)
∧ ¬Bdd(x, n, v)

v is the Gödel number of a variable which is free at the nth place in the

formula having the Gödel number x.

29. Free(v, x)←→
(
∃y ≤ l(x)

)
Fr(x, y, v)

v is the Gödel number of a variable which is free in the formula having

the Gödel number x.

30. Su(x, n, y) =
[
µz ≤

[
Pr
(
l(x) + l(y)

)]x+y]{
(∃u ≤ x)(∃v ≤ x)[(

x = u ? R
(
Dec(n, x)

)
? v
)
∧
(
z = u ? y ? v

)
∧
(
n = l(u) + 1

)]}
If x is the code number of a sequence X, Su(x, n, y) is the code num-

ber of the sequence that substituting the nth term of X by the sequence

represented by y (assuming that y is a code number).

31. Pl(x, 0, v) =
(
µn ≤ l(x)

)[
Fr(x, n, v) ∧

(
∀y ≤ l(x)

)
(Fr(v, y, x)→ n ≤ y)

]
Pl(x, Sk, v) =

(
µn ≤ l(x)

)[
Fr(x, n, v) ∧

(
∀y ≤ l(x)

)(
(Fr(x, y, v) ∧

Pl(x, k, v) < y)→ n ≤ y
)]

If v is the Gödel number of a variable, x is the Gödel number of a formula,

then Pl(x, k, v) is the place of the (k+1)st free occurrence of that variable

in that formula, counting from the beginning. If there is no such place,

then Pl(x, k, v) = 0.

32. A(x, v) =
(
µn ≤ l(x)

)(
Pl(x, n, v) = 0

)
A(x, v) is the number of places that the variable represented by v is free

in the formula represented by x.

33. Sbst(x, 0, v, y) = x

Sbst(x, Sk, v, y) = Su
(
Sbst(x, k, v, y), P l(x, k, v), y

)
Let x represents a formula ϕ, v a variable vi and y a term t. Then

Sbst(x, n, v, y) is the Gödel number of the formula after substitution of vi

by t in the first n free occurrences of vi in ϕ.

34. Subs(x, v, y) = Sbst
(
x,A(x, v), v, y

)
Let x represents a formula ϕ, v a variable vi and y a term t. Subs(x, v, y)

is the Gödel number of the formula after substitution of vi by t in all free

occurrences of vi in ϕ.
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35. FirV ar(x) = (µy ≤ x)
{
Free(y, x) ∧

(
∃z ≤ l(x)

)[
(Dec(z, x) = y) ∧ (∀v ≤

x)
(
∀n ≤ l(x)

)(
(Free(v, x) ∧ (Dec(n, x) = v))→ (z ≤ n)

)]}
FirV ar(x) represents the first free variable (counting from the beginning

of the expression) of a formula.

36. Sub(x, y) = Subs(x, F irV ar(x), y)

Sub(x, y) represents the expression obtained by substituting the expression

represented by y to the first free variable to the formula represented by x.

37. Prop(x)←→ Form(x)∧(∃y ≤ x)
[
V ar(y)∧Free(y, x)∧(∀z ≤ x)

(
V ar(x)∧

Free(z, x)→ z = y
)]

x is a formula with exactly one free variable.

38. Frfor(x, v, y)←→ Form(x) ∧ Term(y) ∧ V ar(v) ∧ (∀z ≤ y)[(
Part(R(z), y)∧V ar(z)

)
→ (∀w ≤ x)

(
Sbf(Gen(z, w), x)→ ¬Free(v, w)

)]
If x represents a formula ϕ, v a variable vi and y a term t, then Frfor(x, v, y)

is provable if and only if t is free for vi in ϕ.

39. Ax1(x)←→ Form(x) ∧ (∃y ≤ x)(∃z ≤ x)
{
Form(y) ∧ Form(z) ∧[

x = Imp
(
y, Imp(y, z)

)]}
x represents an instance of axiom schema 1.

40. Ax2(x)←→ Form(x)∧(∃y ≤ x)(∃z ≤ x)(∃w ≤ x)
{
Form(y)∧Form(z)∧

Form(w) ∧
[
x = Imp

[
Imp

(
y, Imp(z, w)

)
, Imp

(
Imp(y, z), Imp(y, w)

)]]}
x represents an instance of axiom schema 2.

41. Ax3(x)←→ Form(x) ∧ (∃y ≤ x)(∃z ≤ x)
{
Form(y) ∧ Form(z) ∧[

x = Imp
(
Imp

(
Neg(z), Neg(y)

)
, Imp(y, z)

)]}
x represents an instance of axiom schema 3.

42. Ax4(x)←→ Form(x) ∧ (∃y ≤ x)(∃z ≤ x)(∃w ≤ x)
{
Form(y) ∧ V ar(z) ∧

Term(w) ∧ Frfor(y, z, w) ∧
[[
x = Imp

(
Gen(z, y), Subs(y, z, w)

)]]}
x represents an instance of axiom schema 4.

43. Ax5(x) ←→ Form(x) ∧ (∃y ≤ x)
{
V ar(y) ∧

[
x = Gen

(
y,R(y) ? R(21) ?

R(y)
)]}

x represents an instance of axiom schema 5.
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44. Ax6(x) ←→ Form(x) ∧ (∃y ≤ x)(∃z ≤ x)(∃u ≤ x)(∃v ≤ x)
{
Form(y) ∧

Form(z)∧Term(u)∧Term(v)∧
[
x = Imp

(
R(u)?R(21)?R(v), Imp

(
y, z
))]
∧

(∃w1 ≤ y)(∃w2 ≤ y)
[
(y = w1 ? R(u) ? w2) ∧ (z = w1 ? R(v) ? w2) ∧

(∀n ≤ l(u))(∀w ≤ v)[V ar(w) ∧ Part(w, v) ∧ ¬Part(w, u)→

¬Bdd(y, l(w) + n,w)]
]}

x represents an instance of axiom schema 6.

45. Ax7−12(x)←→ (x = a7)∨(x = a8)∨(x = a9)∨(x = a10)∨(x = a11)∨(x =

a12) where a7, a8, a9, a10, a11, a12 are Gödel numbers of the axioms 7, 8, 9,

10, 11, 12 respectively.

x represents one of the axioms 7 to 12.

46. Ax13(x)←→ (∃y ≤ x)(∃z ≤ x)
{
Prop(y) ∧ V ar(z) ∧ Free(z, y) ∧

x = Imp
[
Con

[
Subs(y, z, 1), Gen

[
z, Imp

(
y, Subs(y, z, R(3)?z)

)])
, Gen(z, y)

]}
x represents an instance of axiom schema 13.

47. Ax(x) ←→ Ax1(x) ∨ Ax2(x) ∨ Ax3(x) ∨ Ax4(x) ∨ Ax5(x) ∨ Ax6(x) ∨

Ax7−12(x) ∨Ax13(x)

x represents an axiom.

48. Consq(x, y, z)←→ Form(y)∧Form(z)∧
(
y = Imp(z, x)

)
∨(∃w ≤ x)(∃u ≤

y)(∃v ≤ y)[
V ar(w) ∧

(
y = Imp(u, v)

)
∧ ¬Free(w, u) ∧

(
x = Imp(u,Gen(w, v)

)]
x represented a formula obtained by applying a inference rule on the for-

mulas represented by y and z.

49. Proof(x)←→
(
∀y ≤ l(x)

){
(y = 0) ∨Ax(Dec(y, x)) ∨ (∃z ≤ y)(∃w ≤ y)[

(0 < z) ∧ (0 < w) ∧ Consq
(
Dec(y, x), Dec(z, x), Dec(w, x)

)]}
x represents a proof.

50. Prf(x, y)←→ Proof(x) ∧Dec(l(x), x) = y

x represents a proof of the formula y.

Note that the similarity between the definitions of Seqt(x), Seqf(x) and

Proof(x), all three of them are defining a sequence of expressions that is defined

recursively.

However the transformation rules for terms and formulas are all lengthening

the expressions, where the transformation rules for theorems, i.e. the inference
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rules, can both lengthen and shorten the expressions. Therefore we can give an

upper bound of the length for a shortest sequence4 that forms a specific term

or formula, but we cannot give one for a shortest proof of a specific theorem.

But still we can define a provability predicate, Prov(x), that if x represents

a theorem then Prov(x) is provable, by the following formula:

Prov(x)←→ ∃yPrf(y, x)

2.9 Diagonal Lemma

We now prove the Diagonal Lemma. Though it is called a lemma, it is actually

a quite important and useful theorem.

Lemma 1 (Diagonal Lemma). Let ϕ(x) be a formula with exactly one free

variable. Then there is a sentence ψ such that ψ ↔ ϕ(pψq) is provable.

Proof. Let δ(y) be the formula ϕ
(
Sub(y, y)

)
, and ψ be δ(pδq). Then:

` ψ ←→ δ(pδq)

←→ ϕ
(
Sub(pδq, pδq)

)
←→ ϕ(pδ(pδq)q)

←→ ϕ(pψq)

If ψ is a sentence such that ` ψ ←→ ϕ(pψq), then we will call ψ a fixed point

of ϕ(x).

2.10 Consistency, completeness, ω-consistency

The following are three properties of a formal system that will be used later.

A formal system is consistent if there is no sentence ϕ such that both ϕ and

¬ϕ are provable. In other words, no sentence is both provable and refutable.

A formal system is complete if for every sentence ϕ either ϕ or ¬ϕ is provable.

In other words, every sentence is either provable or refutable.

A formal system is ω-consistent if it has representations for all natural num-

bers, and there is no formula ϕ(x) with one free variable x such that for every

4There may be more than one.
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natural number n, the formula ϕ(n) is provable (where n is a representation

of n in the system), but ¬∀xϕ(x) is also provable. Or equivalently, there is no

formula ϕ(x) with one free variable x such that for every natural number n the

formula ϕ(n) is not provable but ∃xϕ(x) is provable.

For our system, ω-consistency implies consistency, since it is using classical

logic, if it is inconsistent then every formula is provable, particularly ¬∀xϕ(x)

for every ϕ(x).

Also, if T is ω-consistent and ` ∃xϕ(x) for some ϕ, then there is a number

n such that ` ϕ(n). Otherwise ϕ would be a counter-example that makes T not

ω-consistent.

2.11 Gödel’s First Incompleteness Theorem

Here we prove two lemmas concerning consistency, ω-consistency and our prov-

ability predicate Prov(x):

Lemma 2. If ` ϕ then ` Prov(pϕq).

Proof. Without loss of generality, suppose T is consistent5 and ` ϕ. Then

there is a proof of ϕ, let it be ϕ1, ϕ2, . . . ϕn, where ϕn is the formula ϕ. Let

pϕ1, ϕ2, . . . ϕnq = k, the Gödel number of the proof.

By the definitions of Proof(x) and Prf(x, y), we have ` Proof(k) and

` Prf(k, pϕq), hence we have ` Prov(pϕq).

Lemma 3. If T is ω-consistent and ` Prov(pϕq) for some formula ϕ, then

` ϕ.

Proof. Suppose T is ω-consistent. Suppose on the contrary that there is a

formula ϕ such that ` Prov(pϕq) but ϕ is not provable.

Then ` ∃xPrf(x, pϕq), there is a number n such that ` Prf(n, pϕq).

However this means that there is a number n which is the Gödel number of

a proof of ϕ, contradicting our assumption that ϕ is not provable.

Now we can prove the First Incompleteness Theorem:

5Otherwise, every formula is provable, including Prov(pϕq),
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Theorem 4 (Gödel’s First Incompleteness Theorem). If T is ω-consistent, then

there is a sentence G such that neither ` G nor ` ¬G. In other words, if T is

ω-consistent then T is incomplete.

Proof. Suppose T is ω-consistent. By the Diagonal Lemma (Lemma 1), there

is a sentence G such that

G←→ ¬Prov(pGq) (1)

is provable.

Suppose on the contrary that ` G, applying the inference rule (MP) to G

and (1), we have ` ¬Prov(pGq). On the other hand, by Lemma 2 we have

if ` G then ` Prov(pGq). But this means that T is inconsistent, which is

impossible since T is ω-consistent.

Suppose on the contrary that ` ¬G. (1) implies that ` ¬G←→ Prov(pGq).

Applying (MP) we have ` Prov(pGq). But by Lemma 3 we get ` G, again this

means that T is inconsistent, which is impossible.

Therefore, both G and ¬G are not provable.

2.12 Two more proofs

Proof using a refutability predicate

We have already define Prov(x), now we define another predicate by:

Ref(x)←→ ∃yPrf
(
y,Neg(x)

)
Note that Ref(x) is actually Prov(Neg(x)).

Using Ref(x) we can have another proof of Gödel’s first incompleteness

theorem.

Proof. Suppose T is ω-consistent.

Let G∗ be the sentence such that ` G∗ ←→ Ref(pG∗q). The existence of

this sentence is guaranteed by the Diagonal Lemma. Now we will argue that ψ

is neither provable nor refutable.

Suppose on the contrary that ` G∗. By the choice of G∗ we have `

Ref(pG∗q), i.e. ` Prov(p¬G∗q). And by Lemma 3 this implies ` ¬G∗, hence

T is not consistent, contradicting our assumption.
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Suppose on the contrary that ` ¬G∗, by Lemma 2 we have ` Prov(p¬G∗q).

On the other hand, by the choice of G∗ we have ` ¬Ref(pG∗q), i.e. `

¬Prov(p¬G∗q). Then Prov(p¬G∗q) is both provable and refutable, hence T is

not consistent, contradicting our assumption.

Therefore, both G∗ and ¬G∗ are not provable.

Rosser’s Theorem

In fact, we can get rid of the assumption that T is ω-consistent. This is a result

first proven in Rosser (1936). To prove this result, we need to define another

provability predicate ProvR(x):

ProvR(x)←→ ∃y
(
Prf(y, x) ∧ (∀z ≤ y)¬Prf(z,Neg(x))

)
For ProvR(x), we have a result similar to Lemma 2:

Lemma 5. If T is consistent and ` ϕ, then ProvR(pϕq).

Proof. Suppose T is consistent and ` ϕ. Then there is a proof of ϕ, let p be

the number of this proof. By consistency there is no proof of ¬ϕ, particularly

no proof of ¬ϕ which has a Gödel number less than p.

Therefore ` Prf(p, pϕq)∧(∀z ≤ p)¬Prf(z, p¬ϕq), which implies ∃y
(
Prf(y, pϕq)∧

(∀z ≤ y)¬Prf(z,Neg(pϕq))
)

i.e. ` ProvR(pϕq).

We also need the following lemma which will be stated without a proof:

Lemma 6. ` ∀x∀y(x ≤ y ∨ y ≤ x)

Now we can prove Rosser’s result:

Theorem 7. Rosser’s Theorem If T is consistent, then there is a sentence R

such that neither R nor ¬R is provable.

Proof. Suppose T is consistent. By the Diagonal Lemma, there is a sentence R

such that ` R←→ ¬ProvR(pRq).

Suppose ` R. By Lemma 5 we have ` ProvR(pRq). On the other hand,

by the choice of R we also have ` ¬ProvR(pRq), which means ProvR(pRq) is

both provable and refutable, contradicting to our assumption.
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Suppose ` ¬R. By Lemma 5 we have ` ProvR(p¬Rq). Let p be the

Gödel number of a proof of ¬R, hence we have ` Prf(p, p¬Rq) ∧ (∀z ≤

p)¬Prf(z, p¬¬Rq).

By the choice of R we also have ` ProvR(pRq), that is, ` ∃y
(
Prf(y, pRq)∧

(∀z ≤ y)¬Prf(z,Neg(pRq))
)
. Therefore, for some q we have ` Prf(q, pRq) ∧

(∀z ≤ q)¬Prf(z,Neg(pRq))
)
.

Applying Lemma 6, we have p ≤ q ∨ q ≤ p. If p ≤ q, then ` Prf(q, pRq) ∧

¬Prf(p, p¬Rq), resulting the sentence Prf(p, p¬Rq) be both provable and

refutable, contradicting our assumption. Similarly, if q ≤ p we will get another

contradiction.

Therefore both R and ¬R are not provable.

3 The Second Incompleteness Theorem

In the following we will prove the Gödel’s Second Incompleteness Theorem,

which is often said to be “proving that mathematics cannot prove itself consis-

tent”. Putting aside what it means by “prove itself consistent”, it is well known

that in an inconsistent theory anything can be proven, so even if “mathemat-

ics” can “proves itself consistent”, it does not follows that mathematics is in

fact consistent.

A more rigorous formulation of the theorem is the following: If T is consis-

tent, then the sentence ¬Prov(p0 = 1q) is not provable.

It should be noted that the above theorem depends on the definition of

Prov(x). For example, let us define Prov?(x) ←→ Prov(x) ∧ (x 6= p0 = 1q),

then if T is consistent, Prov(x) is provable if and only if Prov?(x) is provable.

This is because if Prov(x) is provable while Prov?(x) is not, then the only

possibility is that Prov(x) ∧ x = p0 = 1q, which is impossible by consistency.

(The other direction is trivial.) However ¬Prov?(p0 = 1q) is provable, since it

is equivalent to ¬Prov(p0 = 1q)∨ (p0 = 1q = p0 = 1q) which is obviously true.6

6Ferenc Csaba suggested this point to me, and the idea can be found in Lindström (1997).
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3.1 About Prov(x)

Before presenting the proof, a little discussion on the meaning of the sentence

¬Prov(p0 = 1q). It is regarded by some people as “saying that T is consistent”,

because they regard Prov(x) is “saying that x is the Gödel number of a provable

formula”. Hence ¬Prov(p0 = 1q) is “saying that 0 = 1 is not provable” for them.

However, we have to be careful that though the intended meaning of Prov(pϕq)

is to imitate the predicate “ϕ is provable” in the metatheory, it does not

fully represent or express that meaning. For, the “not” in our metatheory

is represented by the symbol “¬” in T, but “ϕ not provable” is different from

` ¬Prov(pϕq). For example, we know that G, the Gödel sentence in the proof

of first incompleteness theorem, is not provable, at the same time we do not

have ` ¬Prov(pGq).

Moreover, it is not just the problem of our choice of Prov(x), we have the

following result:

Proposition 8. If T is consistent, then it is impossible to have a predicate

P (x) satisfying the following two conditions:

1. If ` ϕ then ` P (pϕq).

2. If 0 ϕ then ` ¬P (pϕq).

Proof. Otherwise consider a sentence ψ such that ` ψ ↔ ¬P (pψq), whose

existence is guaranteed by the Diagonal Lemma.

Suppose ` ψ, then by the choice of ψ we have ` ¬P (pϕq). But by our

assumption on P (x) this implies 0 ψ.

On the other hand, suppose 0 ψ, then ` ¬P (pϕq). But by the choice of ψ

we have ` ψ.

In both cases there is a contradiction, hence such a P (x) cannot exist.

Remember now we have:

1. If T is consistent and ` ϕ, then ` P (pϕq).

2. If T is ω-consistent and ` P (pϕq), then ` ϕ.

In other words, if T is ω-consistent, then ` ϕ if and only if ` P (pϕq).
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It is natural to ask whether it is possible to weaken the assumption from

ω-consistent to consistency. After this section we will see that it is impossible

under certain assumption.

3.2 Derivability conditions

A predicate P (x) is a provability predicate if it satisfies the following three

conditions:

1. If ` ϕ then ` P (pϕq)

2. ` P (pϕ→ ψq)→
(
P (pϕq)→ P (pψq)

)
3. ` P (pϕq)→ P

(
pP (pϕq)q

)
These three conditions are proposed by Martin Löb in Löb (1955). We called

Prov(x) a provability predicate before, so it is not difficult to guess Prov(x)

satisfies the above conditions. Indeed, we have proven (1) in our Lemma 2.

Intuitively, (2) and (3) are “pushing down” modus ponens and (1) into the

object level by using Prov(x). Unfortunately the proofs of them – as said in

Boolos et al. (2007) – “would take up too much time and patience”. In the

following we will simply assume them to be true. For more details, see Ch.26

of Smith (2007) for a “sketch of a proof sketch”, and Ch.2 of Boolos (1993) for

a sketch of a proof.

For readability, instead of writing Prov(pϕq), which will be used iteratively

a lot of times, we will use a new notation �ϕ in the rest of this section. For

example, for the Gödel sentence G in the above proof of first incompleteness

theorem, we know that ` G ←→ ¬�G. Also, the sentence “0 = 1” will be

abbreviated as “⊥”.

So we have the following:

D1 If ` ϕ then ` �ϕ.

D2 ` �(ϕ→ ψ)→
(
�ϕ→ �ψ

)
D3 ` �ϕ→ ��ϕ
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3.3 Löb’s Theorem and Second Incompleteness Theorem

In Löb (1955), Martin Löb solved a problem proposed by Leon Henkin, con-

cerning whether a fixed point of Prov(x) is provable or not. That is, given that

` ϕ↔ �ϕ, is ϕ itself provable?

Löb’s answer is positive, and we have the following theorem:

Theorem 9 (Löb’s Theorem). If T is consistent, and ` �ϕ→ ϕ, then ` ϕ.

Proof. Suppose ` �ϕ → ϕ. By applying the Diagonal Lemma to the formula

Prov(x)→ ϕ, we will get a sentence ψ such that ` ψ ↔ (�ψ → ϕ). Then:

1. ` ψ ↔ (�ψ → ϕ)

2. ` ψ → (�ψ → ϕ)

3. ` �(ψ → (�ψ → ϕ)) (By D1)

4. ` �ψ → �(�ψ → ϕ) (By D2)

5. ` �ψ → (��ψ → �ϕ) (By D2)

6. ` �ψ → ��ψ (By D3)

7. ` �ψ → �ϕ (By 6,7)

8. ` �ϕ→ ϕ (By assumption)

9. ` �ψ → ϕ (By 7,8)

10. ` ψ (By 9,1)

11. ` �ψ (By D1)

12. ` ϕ (By 9,11)

Now we can rephrase (in our new notation) and prove the Second Incom-

pleteness Theorem from Löb’s theorem:

Theorem 10 (Gödel’s Second Incompleteness Theorem). If T is consistent,

then 0 ¬�⊥.
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Proof. Suppose ` ¬�⊥. Then:

` �⊥ → ¬¬�⊥ (By a basic fact in classical logic)

` ¬¬�⊥ → ⊥ (By consistency of T)

⇒ ` �⊥ → ⊥ (By MP)

⇒ ` ⊥ (By Löb’s theorem)

Which implies that T is inconsistent. Therefore if T is consistent, then ¬�⊥

is not provable.

From the Second Incompleteness Theorem we have the following corollary:

Lemma 11. If T is consistent, then for any formula ϕ, 0 ¬�ϕ.

Proof. Let ϕ be any formula. Then:

` ⊥ → ϕ (By a basic fact in classical logic)

⇒ ` �(⊥ → ϕ) (By D1)

⇒ ` �⊥ → �ϕ (By D2)

⇒ ` ¬�ϕ→ ¬�⊥ (By a basic fact in classical logic)

Hence if ¬�ϕ is provable, by modus ponens we will have ` ¬�⊥, contra-

dicting the Second Incompleteness Theorem. Therefore for any formula ϕ, ¬�ϕ

is not provable.

From the above corollary, we can have one more result:

Corollary 12. If T is ω-consistent and ϕ is refutable, then �ϕ is undecidable.

Proof. ϕ is refutable, therefore ` ¬ϕ. By the consistency of T, we know that

0 ϕ. Using the contrapositive of Lemma 3, 0 ϕ implies 0 �ϕ, that is, �ϕ is not

provable.

By Lemma 11, ¬�ϕ is not provable. Therefore �ϕ is undecidable.

3.4 Provability predicate again

In the end of Section 3.1, we asked this question: given that T is consistent,

is it possible to have a predicate P (x) such that for any formula ϕ, ` ϕ if and

only if ` P (pϕq)? A partial answer is the following:
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Proposition 13. If T is consistent, there is no P (x) satisfying the following

conditions:

1. For any formula ϕ, ϕ is provable if and only if P (pϕq) is provable;

2. The derivability conditions D1, D2, and D3;

3. For any formula ϕ, P (pP (pϕq)q)→ P (pϕq) is provable.

Proof. Suppose such a P (x) exists. Let �̇ϕ abbreviates P (pϕq). Let ϕ be a

formula, then:

` �̇�̇ϕ→ �̇ϕ (By the third condition)

⇒ ` �̇ϕ (By Löb’s theorem)

⇒ ` ϕ (By the first condition)

But ϕ is arbitrary, this would lead to the inconsistency of T. Hence by contra-

diction there is no such a P (x).

4 Grelling’s Paradox

It is usually said that the proof of first incompleteness theorem is related to the

liar paradox, in a way that the Gödel sentence G is “saying” that “I am not

provable” or “This sentence is not provable”. However it is quite inaccurate,

even misleading, as there is no indexical words like “I” or “this” used in the

proof and in the language.

In this section, we will see that the formalization of Grelling’s paradox yields

two undecidable sentences, and one of them is the Gödel sentence in the previous

section.7 8

Grelling’s paradox is a semantical paradox, a popular version of the paradox

is like this:

7In Boolos et al. (2007), an undecidable sentence obtained from formalizing Grelling’s

paradox is briefly sketched. But it seems that the authors do not notice the relation between

this sentence and the original Gödel sentence, as they say that it is an “undecidable sentence

without the Diagonal Lemma”, which is arguably not the case.
8After finishing the first draft of this section, I find a similar idea which turns the Grelling’s

paradox into a proof of the Diagonal Lemma in Serény (2006).
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Let us call an adjective autological if it can be applied to itself,

and heterological if it cannot. For example “polysyllabic” is polysyl-

labic, so it is an autological adjective; “monosyllabic” is not mono-

syllabic, so it is heterological. The problem is: is “heterological”

heterological?

If “heterological” is heterological, then it is autological and can-

not be heterological. If it is not, then it cannot be applied to itself,

which means it is heterological. In short, “heterological” is hetero-

logical if and only if it is not.

Since we are trying to talk about it in formal languages, it seems to be better

if we talks about predicates. Hence we have:

A predicate P is autological if P (P ) is true, and heterological if

P (P ) is false.

But there is already a problem, it is meaningless to put a predicate as its own

argument. In mathematical logic, the usual interpretation of an (n+ 1)st-order

predicate is a set of nth-order objects, and in any well-founded set theory, a set

cannot be an element of itself. In fact, this leads us to the Russell’s paradox in

naive set theory if we are talking about sets instead of predicates.

Take a closer look to the adjective version of Grelling’s paradox, we find that

we are saying “polysyllabic’ is polysyllabic”, not “polysyllabic is polysyllabic”.

In other words, we are talking about whether the word “heterological” is satis-

fying the property of being heterological. The word “heterological” is the name

of the property of being heterological. So we can write in this way:

A predicate P with a name ‘P ’ is autological if P (‘P ’) is true, and

heterological if P (‘P ’) is false. For the predicate H which expresses

heterologicality, H(‘H’) is true if and only if it is false.

4.1 Aut(x), Het1(x) and Het2(x)

Now we have to ensure the names of predicates can be an argument of the

predicate, otherwise it is meaningless again. By the arithmetization of syntax,

for any predicate F (x) there is a Gödel number pF (x)q, and we can talk about

F (pF (x)q).
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Hence we can define F to be autological if it is provable that F (pF (x)q), i.e.

` F (pF (x)q).

Since we have defined a provability predicate Prov(x) and a substitution

relation Sub(x, y) such that Sub(pF (x)q, k) = pF (k)q for any predicate F (x)

and number k, we can define the autological predicate Aut(x) by the following:

Aut(x)
def⇐⇒ Prov(Sub(x, x))

And we have two choices for the definition of the heterological predicate,

depending on how we interpret “false”. So here we use Het1(x) and Het2(x) to

denote them:

Het1(x)
def⇐⇒ ¬(Prov(Sub(x, x)))

Het2(x)
def⇐⇒ Prov(Neg(Sub(x, x)))

Let h1 = pHet1(x)q , h2 = pHet2(x)q . Then we have the following results:

Theorem 14. If T is ω-consistent, then Het1(h1) and Het2(h2) are both un-

decidable.

Proof. Suppose ` Het1(h1).

` Het1(h1)⇒ ` ¬(Prov(Sub(h1, h1)))

⇒ ` ¬(Prov(pHet1(h1)q))

At the same time we have:

` Het1(h1)⇒ ` Prov(pHet1(h1)q)

By consistency this is impossible, hence Het1(h1) is not provable. On the other

hand:

` ¬Het1(h1)⇒ ` ¬¬(Prov(Sub(h1, h1)))

⇒ ` Prov(Sub(h1, h1))

⇒ ` Het1(h1) (by ω-consistency)

By consistency this is impossible. Therefore Het1(h1) is neither provable nor

refutable.
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Similarly, suppose ` Het2(h2)

` Het2(h2)⇒ ` Prov(Neg(Sub(h2, h2)))

⇒ ` Neg(Sub(h2, h2)) (by ω-consistency)

⇒ ` Neg(pHet2(h2)q)

⇒ ` ¬Het2(h2)

By consistency Het2(h2) is not provable. On the other hand:

` ¬Het2(h2)⇒ ` Prov(p¬Het2(h2)q)

⇒ ` Prov(Neg(Sub(h2, h2)))

⇒ ` Het2(h2) (by the definition of Het2.)

By consistency this is impossible, therefore Het2(h2) is neither provable nor

refutable.

We now have two undecidable sentences, Het1(h1) and Het2(h2). Looking

into the details of the proof of the Diagonal Lemma, we will find that Het1(h1)

is actually what we get when we apply the lemma to the predicate ¬Prov(x),

i.e. ¬Prov(Sub(x, x)), so Het1(h1) is the usual Gödel sentence; and similarly

Het2(h2) is the result of applying the lemma to Prov(Neg(x)), which is the

refutability predicate Ref(x).

5 Curry’s Paradox

In Curry (1942), Haskell Curry presented a paradox which is later called Curry

paradox. The original paper deals with a certain formal systems, but the para-

dox can also be presented in an informal way.

Consider the following sentence X: “If X is true, then the Earth is flat”.

Here the “if . . . , then . . . ” clause is understood as the material conditional, so

X says that either X is not true, or the Earth is flat.

To prove a conditional sentence, we can first suppose the antecedent, then

try to derive the consequent. If we can do that, then the conditional sentence

is proven.

So let us suppose the antecedent, i.e. X is true. Then “If X is true, then the

Earth is flat.” is true, and by modus ponens we derive that the Earth is flat,

28



given that X is true. Therefore we have just “proven” that “If X is true, then

the Earth is flat”.

But “If X is true, then the Earth is flat” is the very sentence X, and by

modus ponens again we can derive that the Earth is flat, which violates modern

science yet proven by logic.

Furthermore, we can substitute any sentence to “the Earth is flat”, and

using nearly the same “proof” we can derive any sentence we want. Obviously

something goes wrong, and this is an informal version of the Curry’s paradox.

We will call any sentence of the form “If this sentence is true, then A” or “If X

is true, then A”, where X is the same sentence, a Curry sentence.

Though first discovered by Curry, this paradox is also called Löb’s paradox,

since it is closely related to Löb’s theorem and mentioned in his Löb (1955). In

the following we can see how to formalize this paradox to obtain an undecidable

sentence.

5.1 Fomalized Curry sentence

As in the case of the Liar paradox, we need the Diagonal Lemma to imitate the

Curry paradox in our system T. Therefore consider the following formula with

one free variable:

Prov(x)→ (0 = 1)

and let C be a fixed point of this formula. Then we have:

` C←→
(
Prov(pCq)→ (0 = 1)

)
Now we can prove the following theorem:

Theorem 15. If T is ω-consistent, then neither C nor ¬C is provable.

Proof. Suppose ` C. By Lemma 2 we have ` Prov(pCq). By the choice of C we

have ` Prov(pCq)→ (0 = 1). By modus ponens we get ` 0 = 1, contradicting

the assumption that T is consistent.

Suppose ` ¬C. By the choice of C we have ` ¬
(
Prov(pCq) → (0 = 1)

)
,

that is ` Prov(pCq) ∧ ¬(0 = 1). Therefore we get ` Prov(pCq). Since we

assume that T is ω-consistent, by Lemma 3 we get ` C, again contradicting the

assumption that T is consistent.

Therefore C is undecidable.
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We also have another similar undecidable sentence C′, which is a fixed point

of Prov(Imp(x, p(0 = 1)q)). That is,

` C′ ←→ Prov(pC′ → (0 = 1)q))

Theorem 16. If T is ω-consistent, then neither C′ nor ¬C′ is provable.

Proof. Suppose ` C′, by the choice of C′ we have ` Prov(pC′ → (0 = 1)q)).

Since we assume T is ω-consistent, by Lemma 3 we get ` C′ → (0 = 1). By

our hypothesis and modus ponens we get ` 0 = 1, contradicting our assumption

that T is consistent.

Suppose ` ¬C′, by the choice of C′ we have ` ¬Prov(pC′ → (0 = 1)q)). By

Corollary 11, this is impossible.

Therefore neither C′ nor ¬C′ is provable.

In fact, C is a fixed point of ¬Prov(x), that is:

Theorem 17. ` C←→ ¬Prov(pCq)

To prove the above theorem, we need the following lemma:

Lemma 18. Let ϕ be a formula, then `
(
ϕ→ (0 = 1)

)
←→ ¬ϕ

Proof. Let ϕ be a formula. Suppose ¬ϕ is provable then by classical logic so is

¬(0 = 1)→ ¬ϕ, and the latter is equivalent to ϕ→ (0 = 1).

Suppose ϕ → (0 = 1) is provable, then we have ¬(0 = 1) → ¬ϕ. And since

¬(0 = 1) is provable, by modus ponens we know that ¬ϕ is provable.

Therefore, for any formula ϕ, ` ϕ→ (0 = 1)←→ ¬ϕ.

Now the proof of Theorem 17 becomes trivial:

Proof. By the choice of C, we have ` C ←→
(
Prov(pCq) → (0 = 1)

)
. By

Lemma 18, we have `
(
Prov(C)→ (0 = 1)

)
←→ ¬Prov(C).

Therefore ` C←→ ¬Prov(pCq).

Hence we can see that C is a fixed point of ¬Prov(x). Similarly we can

prove that C′ is a fixed point of Prov(Neg(x)).
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6 Berry Paradox

The Berry paradox, first published in Russell (1967), is a paradox about the

names and descriptions of natural numbers.

Let us consider the definite descriptions of any natural number, which are

those descriptions in which exactly one number satisfies. For example, “the

number which is not a successor of another number” is a definite description

of the number 0, “the smallest prime number” is a definite description of the

number 2.

For convenience let us just consider those descriptions formed by English

words. There are 26 letters in the alphabet, plus a space, so there are 27k

possible combinations for expressions of length k (space included), and there

are 1 + 27 + 272 + · · · + 27k−1 possible combinations for expressions of length

less than k.

These numbers are, of course, finite. Which means for every natural number

k, there must be infinitely many numbers that cannot be definitely described

in less than k letters. As the set of natural numbers is well-ordered, there is a

least number that cannot be definitely described in less than k letters, for any

number k.

Now consider the definite description “the least number that cannot be defi-

nitely described in less than 80 letters”, which must be a definite description of

some number n. Nevertheless the above description is less than 80 letters long9,

therefore it cannot be a definite description of this n.

This is a version of Berry paradox, other versions involves syllables or words

instead of letters, definitions or names instead of definite descriptions, but the

key idea is the same.

In this section we will see two informal proofs of Gödel first incompleteness

theorems involving Berry paradox. One is from Boolos (1998), another is from

Chaitin (1971). Both proofs below are presented in an informal way, and then

there will be a more formalized proof.10

In the following, we need to talk about the formal expression of a number

9Count it if you want.
10It is a matter of degree of what is considered “formalized”, as most proofs are not totally

formalized.
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n, to avoid confusion we will denote them with an overline. That is, the formal

expression of n (which is a number, not a variable) is n, i.e.SS . . . S︸ ︷︷ ︸
n

0.

6.1 Boolos’s proof

In this proof, there is a slight difference between the language used here and the

rest of the article. For example, Boolos’s variables are x, x′, x′′, x′′′, . . . instead

of v0, v1, v2, ..., hence all his variables are built from the symbols x and ′. Again

we will abbreviate the variables by single letters.

And the main difference between what we have done so far and Boolos’s

proof is that Boolos uses a semantic argument. It is assumed that we are in

the standard model of first-order Peano arithmetic. That means we have the

concept of truth and falsity (in the model with ω, the set of natural numbers).

Now suppose our formal system T is sound, that is, every theorem of T is

true. We say that a formula ϕ(x) names a number n if ∀x(ϕ(x) ↔ x = n) is

provable.

Note that every formula can name at most one number. Otherwise, suppose

m 6= n and F (x) names both m and n, then ∀x(ϕ(x)↔ x = n) and ∀x(ϕ(x)↔

x = m) are both provable. By substitution we will get both ϕ(m) ↔ m = n

and ϕ(m) ↔ m = m, then (m = m) ↔ (m = n) is provable, contradicting our

assumption that T is sound.

Also note that for every number k, there are finitely many numbers that

can be named by a formula with less than k symbols. This is because we have

finitely many symbols (including the variables, as we use x and ′ to denote them)

in our language, so there are finitely many formulas with less than k symbols.

And as we have seen, every formula can name at most one number, even if every

formula with less than k symbols names a unique number, the total number of

numbers named is still finite.

Since natural numbers are well-ordered11, we have the following:

Lemma 19. For every number k there is a least number cannot be named by

formulas with less than k symbols.

Let C(x, z) be a formula saying that x is named by a formula containing z

11That means in every subset of natural number there is a least element in it.
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symbols, and B(x, y) be the formula ∃z(z < y ∧ C(x, z)), which says that x is

named by a formula containing less than y symbols. Let A(x, y) be the formula

¬B(x, y) ∧ ∀a
(
a < x → B(a, y)

)
, which says that x is the least number not

named by any formula containing less than y symbols.

Then let k be the number of symbols in A(x, x′), obviously k > 3, and

F (x) be the formula ∃x′
(
(x′ = 10×k)∧A(x, x′)

)
, which says that x is the least

number that cannot be named by any formula containing less than 10k symbols.

After that, let us count the number of symbols in F (x): the formal expression

of k contains k + 1 symbols and that of 10 contains 11 symbols, so it will be

8 + 11 + 1 + (k + 1) + 2 + k + 1 = 2k + 24 (do not miss out the ′), which is less

than 10k as k > 3.

By Theorem 19, there is a number that cannot be named by any formula

containing less than 10k symbols, let it be n. So A(n, 10k) is true.

F (x) contains less than 10k symbols, hence n cannot be named by F (x),

and ∀x
(
F (x)↔ x = n

)
cannot be provable (by the definition of naming).

However F (n) is true as it says “n is the least number that cannot be named

by any formula containing less than 10k symbols. Which means ∀x
(
F (x)↔ x =

n
)

is true. Then the negation of this sentence is false and cannot be provable

by our soundness assumption.

Therefore ∀x
(
F (x)↔ x = n

)
is undecidable.

6.2 Chaitin’s proof

For Chaitin’s proof we need to introduce a concept called Kolmogorov com-

plexity. Let us first fixed a programming language, and consider the programs

written by that programming language.

We further assume that numbers can be printed out on the screen in decimal

expressions, and for every number there is a program that just runs and prints

that number (only). For example, there may be a program that with code

(translated to English) saying “print 50” and the output is “50”, or “calculate

the factorial of 5 and print the result” and the output is “120”.

Then we can define Kolmogorov complexity (with respect to this language)

of a number n, denoted by K(n), as the length of the shortest program that

the output is n. It is well defined for every n, by our assumption that there is
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a program with output n.

Similar to the case in Boolos’s proof, for every number k there are finitely

many numbers that is an output of a program of length less than k. Therefore

for every k there is a number uk such that K(uk) ≥ k.

Now suppose there is a consistent formal system like our T such that we

can prove or disprove every sentence of the form K(n) ≥ C, where n and C are

numbers.12

There is a minor problem: how can we talk about programs (and length of

them) in the formal system? But this does not bother us, we can just take a

specific alphabet and a universal Turing machine of that alphabet. It is well-

known that every Turing computable function is a recursive function. So for a

program that just runs and prints the number n can be considered as a Turing

machine that having output n (or some representation of n) when the input is

empty, or a recursive function f(x) such that f(0) = n. And we can take the

length of the definition of a recursive function as the complexity of it.13

Without working out the details, let us just assume that we can more or less

“talk about” Kolmogorov complexity in a formal system, and every sentence of

the form K(n) ≥ C is decidable for every number n and C.

Fix a number C, then consider sentences of the form K(n) ≥ C which

are provable. Note that if it is provable, then K(n) ≥ C. This is because if

K(n) ≥ C is provable but K(n) < C, then there is a program of length less

than C that outputs n. It is a finite computation and K(n) < C can be proved

in our system, contradicting our assumption that the system is consistent.

Then let w be the first14 proof of sentences of this form, and nw be the

corresponding number. That is, w a proof of the sentence K(nw) ≥ C.

And we can have a program that output nw: enumerate all the possible

proofs (in the order described in footnote 14), and for the first proof of the form

K(n) ≥ C, prints n and then stops.

The length of this program depends on the length of the expression of C.

12Caution: This is an abuse of notation, since “K(n) is different from “K(n)”, the former

is a corresponding function in the system.
13In fact, 3-tape-symbol Turing machines were used to prove the theorem in Chaitin (1971).
14It is not difficult to define a well-ordering on the set of expressions of an countable (possibly

finite) alphabet. For example, we can order them by lengths, and order expressions of the same

length according to alphabetical order. Hence there must be a first proof of such sentences.
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Let the length of the other parts of the program (without any occurrence of the

expression of C) be p, and the expression of C occurs q times in the program.

Then the length of this program is smaller than p + q(logC + 1), where logC

is the logarithm of C, the number (not necessarily a natural number) such that

10logC = C.

For a sufficiently large C0, we have C0 > p + q(logC0 + 1). However such

program outputs a number n0, that means K(n0) < C0, and n0 is supposed

to have a Kolmogorov complexity at least C0, from the above argument that if

K(n0) ≥ C0 is provable then K(n0) ≥ C0. Thus we get a contradiction.

Therefore, K(n0) ≥ C0 is not provable, and we get another undecidable

sentence.

6.3 Formalized Boolos’s proof

Boolos only gave a sketch of proof in his paper, more detailed and formalized

proofs can be found in Kikuchi (1994) and Serény (2004). In the following we

will present a proof based on Boolos’s idea with the notations in this work.

Let us call a formula ϕ standard if all variables, free or bounded, in the

formula are v0, v1, . . . , vk−1, where k is the number of variables in ϕ. That is,

we use the smallest possible indices of variables in the formula.

We say a formula ϕ(x) with one variable describes a number n if the sentence

∀x
(
ϕ(x)↔ x = n

)
is provable.

Now, we have a few relations to define:

1. Occ(x, y)←→ Form(x) ∧ V ar(y) ∧
(
∃z ≤ l(x)

)(
Dec(z, x) = y

)
y represents a variable that occurs in the formula represented by x.

2. Eqv(x, y)←→ Con
(
Imp(x, y), Imp(y, x)

)
If x = pϕq and y = pψq, then Eqv(x, y) = pϕ↔ ψq.

3. StdFm(x) ←→ Form(x) ∧
(
∀y ≤ 19

l(x))[
Occ(x, y) → (∀z ≤ y)

(
z | y →

Occ(z, y)
)]

x represents a standard formula.

4. Desc(x, n)←→ Prop(x) ∧ (∃y ≤ x)Free(y, x) ∧

Prov
[
Gen

(
y,Eqv

(
x, y ? R(21) ? R(N(n))

))]
x represents a formula that describes n.
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5. sDesc(n) =
(
µx ≤ R(19) ? R(21) ? R(N(n))

)[
Desc(x, n) ∧ StdFm(x) ∧(

∀y ≤ R(19) ? R(21) ? R(N(n))
)(
Desc(y, n)→ l(x) ≤ l(y)

)]
sDesc(n) is the Gödel number of the shortest standard formula that de-

scribes n.15

6. Undes(n) =
(
µx ≤ [n× (10 + n)n]

)
¬
(
l(sDesc(x)) ≤ n

)
Undes(n) is the smallest number that cannot be described by any formula

of length less than or equal to n.16

Now let k be the number of symbols of the formula Undes(v1). Note that

for every number n, the length of n (the formal expression of the number n) is

n + 1. Then consider the following formula (under the formula there are some

numbers showing how many symbols are used):

∃v1(v1 =︸ ︷︷ ︸
5

10︸︷︷︸
11

×︸︷︷︸
1

k︸︷︷︸
k+1

∧︸︷︷︸
1

Undes(v1)︸ ︷︷ ︸
k

= v0)︸ ︷︷ ︸
3

(2)

Let us call this formula B(v0), which contains 5+11+1+k+1+1+k+3 =

2k+ 22 symbols. B(v0) describes a number b, which is the least number cannot

be described by any formula of length less than 10 × k. Obviously k > 3,

therefore 2k + 22 ≤ 10× k, the length of B(v0) is less than 10× k.

For convenience, in the following let m = 10 × k. Before we construct an

undecidable sentence, we need a few lemmas.

Lemma 20. If T is ω-consistent and ` Desc(p, n1) ∧Desc(p, n2) then ` n1 =

n2.

15On the bound of x: R(19) ? R(21) ? R(N(n)) is the Gödel number of the formula

x = SS . . . S︸ ︷︷ ︸
n

0, which is, of course, a description of n.

16On the bound of n: we have 10 symbols and infintiely many variables, but there are

at most first k variables in a standard formula of length k, so there are (10 + k)k possible

expressions of length k, and 11 + 122 + 133 + . . . + (10 + n)n possible expressoins of length

less than or equal to n, which is much less than n× (10 + n)n. By the pegionhole principle,

there must be a number less than or equal to n× (10 + n)n that cannot be described by any

formula of length less than or equal to n.
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Proof. Let p = pϕ(v0)q, suppose ` Desc(pϕ(v0)q, n1) ∧Desc(pϕ(v0)q, n2).

` Desc(pϕ(v0)q, n1)

=⇒ ` Prop(pϕ(v0)q) ∧ (∃pv0q ≤ pϕ(v0)q)Free(pv0q, pϕ(v0)q)

∧ Prov
(
p∀v0(ϕ(v0)↔ v0 = n1)q

)
=⇒ ` Prov

(
p∀v0(ϕ(v0)↔ v0 = n1)q

)
=⇒ ` ∀v0(ϕ(v0)↔ v0 = n1)

Similarly, we have:

` ∀v0(ϕ(v0)↔ v0 = n2)

=⇒ ` ∀v0(v0 = n1 ↔ v0 = n2)

=⇒ ` n1 = n1 ←→ n1 = n2

=⇒ ` n1 = n2

Corollary 21. If T is ω-consistent, ` m 6= n and ` Desc(p,m) ∧Desc(q,m),

then ` p 6= q.

Lemma 22. For every number n, there is a number sn > 0 such that

` sDesc(n) = sn.

Proof. This is because the formula v0 = n is a description of n, both its length

and Gödel number are finite, hence there must be an sn such that

` sDesc(n) = sn.

Theorem 23. If T is ω-consistent, then the sentence ∃v0
(
Undes(m) = v0

)
is

neither provable nor refutable.

Proof. Suppose ` ∃v0Undes(m) = v0. By ω-consistency, there is a number um
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such that ` Undes(m) = um

` ∃v1(v1 = m ∧ Undes(v1) = um)

=⇒ ` B(um)

=⇒ ` ∀v0(B(v0)↔ v0 = um)

=⇒ ` Prov
(
p∀v0(B(v0)↔ v0 = um)q

)
=⇒ ` Desc(pB(v0)q, um)

However, since ` l(pB(v0)q) ≤ m,

we have ` ¬Undes(m) = um which leads to a contradiction.

On the other hand, suppose ` ¬∃v0Undes(m) = v0, which is equivalent to:

` ∀v0¬Undes(m) = v0

=⇒ ` ¬Undes(m) = 0

By the definition of Undes(m) , we have:

` (∃x ≤ (m× (10 +m)m)¬(l(sDesc(x) ≤ m)

=⇒ ` ∃x(x = 0 ∨ x = 1 ∨ . . . ∨ x = m× (10 +m)m) ∧ ¬(l(sDesc(x) ≤ m)

Then there is a least number a0 ≤ m× (10 +m)m such that

` ¬l(sDesc(a0) ≤ m)

But then ` Undes(m) = a0 , contradicting

` ∀v0¬Undes(m) = v0

Therefore ∃v0
(
Undes(m) = v0

)
is neither provable nor refutable.

6.4 Relation between Boolos’s and Chaitin’s proof

Using the functions and relations we have defined so far, it is straightforward to

define a function K(x) as an analogue of Kolmogorov complexity in Chaitin’s

proof: K(x) = l(sDesc(x)), which is the length of the shortest description of x.

However, Chaitin’s idea does not work here, that is, we cannot find a number

C0 such that the length of the formulaK(x) ≥ C0 is less than C0. This is because

in T n is represented by an expression of length n+1, while in Chaitin’s proof it

is assumed that numbers are represented in positional systems with base larger
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than 1. The latter assumption ensures the existence of C0 such that the program

required in the proof, which contains a string representing C0, is of length less

than C0.

This is where Boolos’s tricks works, that is, instead of directly putting a

long numeral into the formula, we can break it down by multiplication. In the

previous proof, we use the formula ∃v1(v1 = 10 × k ∧ Undes(v1) = v0), where

k is the length of the formula Undes(v1), which is provably equivalent to the

formula Undes(10× k) = v0.

Similarly we can let h be the length of the full expression of the formula

K(v0) > v1, and C(v0) be the formula ∃v1(v1 = 10 × h ∧ K(v0) > v1). The

length of C(v0) is 2h + 20, which is less than 10h since h > 3. And from the

definition of Undesc(x) it is not difficult to see that C(v0) is actually B(v0).

7 Yablo’s Paradox

Stephen Yablo propose a relatively young paradox in (Yablo, 1993), which can

be formulated as the following.

Consider the following infinite list of sentences:

S0 : For all k > 0, Sk is not true.

S1 : For all k > 1, Sk is not true.

S2 : For all k > 2, Sk is not true.

...
...

That is, for any i, Si is the sentence “For all k > i, Sk is not true.”

Is S0 true? Suppose it is, then S1 is not true. Since S1 is not true, there is

some n > 1 such that Sn is true. But by our assumption that S0 is true, Sn is

not true as n > 0.

On the other hand, suppose S0 is not true, then there is some n > 0 such

that Sn is true. Obviously n + 1 > n, so Sn+1 is not true, and there is some

m > n+ 1 such that Sm is true. But then m > n and Sm is true, contradicting

Sn.
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In fact, by substituting the number 0 by any other number (including the

subscripts) in the above argument, every sentence on the list is paradoxical, as

we can start the sequence from any point.

7.1 Formalization using Prov(x)

In a footnote of Priest (1997), Priest said “one can turn Yablo’s argument into

a proof of Gödel’s first incompleteness theorem”, this idea is developed in Cook

(2006) without going to the discussion about undecidable sentences, and in

Cies̀liǹski and Urbaniak (2013) of which this section is based on.

Before formalizing the paradox, we need the following version of Lemma 1:

Lemma 24 (Diagonal Lemma). Let ϕ(x, y) be a formula with exactly two free

variables x and y. Then there is a formula ψ(x) with exactly one free variable

x such that ψ(x)←→ ϕ(x, pψ(x)q) is provable.

Proof. Let δ(x, y) be the formula ϕ
(
x, Subs(y, pyq, y)

)
, d = pδ(x, y)q, ψ(x) be

the formula δ(x, d). Then:

` ψ(x)←→ δ(x, d)

←→ ϕ
(
x, Subs(d, pyq, d)

)
←→ ϕ

(
x, pδ(x, d)q

)
←→ ϕ

(
x, pψ(x)q)

Then consider the following open formula:

∀z
(
z > x→ ¬Prov(Sub(y, pzq))

)
By the above lemma, there is a formula Y(x) such that

` Y(x)←→ ∀z
(
z > x→ ¬Prov(pY(z)q)

)
Then we have the following result:

Theorem 25. If T is ω-consistent, then for any natural number k, the sentence

Y(k) is neither provable nor refutable.

40



Proof. Let k be a natural number. Suppose Y(k) is provable. Then:

` Y(k)⇒` ∀z
(
z > k → ¬Prov(pY(z)q)

)
(By definition)

⇒` ∀z
(
z > k + 1→ ¬Prov(pY(z)q)

)
(Since ∀z(z > k + 1→ z > k))

⇒` Y(k + 1) (By definition)

⇒` Prov(pY(k + 1)q) (By Lemma 2)

But since ` k + 1 > k, by ∀z
(
z > k → ¬Prov(pY(z)q), we have ` ¬Prov(pY(k + 1)q).

By consistency of T, this is impossible. Hence for any natural number k, Y(k)

is not provable.

On the other hand, suppose Y(k) is refutable. Then:

` ¬Y(k)⇒ ` ¬∀z
(
z > k → ¬Prov(pY(z)q)

)
(By definition)

⇒ ` ∃z
(
z > k ∧ Prov(pY(z)q)

)
Since T is ω-consistent, there is a number n such that:

` n > k ∧ Prov(pY(n)q)

⇒ ` Prov(pY(n)q)

⇒ ` Y(n) (By Lemma 3)

But by the first half of this proof, Y(n) cannot be provable, so there is a contra-

diction. Therefore, for any number k, Y(k) is neither provable nor refutable.

7.2 Existential Yablo’s paradox

There is a dual form of the original Yablo’s paradox, using existential quantifiers

instead of universal quantifiers. Consider the following infinite list of sentences:

T0 There is at least one k > 0 such that Tk is not true.

T1 There is at least one k > 1 such that Tk is not true.

T2 There is at least one k > 2 such that Tk is not true.

...
...

Let n be an arbitrary number. Suppose Tn is not true. Then for all k > n,

Tk is true. But then Tn+1 is true, that means there is an m > n+ 1 such that
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Tm is not true, contradicting that Tk is true for every k larger than n. Hence it

is impossible for Tn not to be true, no matter what n is.

On the other hand, suppose Tn is true. Then there is some m > n such that

Tm is not true. But by the above paragraph if Tm is not true then there is a

contradiction. Therefore Tn is paradoxical for any n.

Now consider the following open formula:

∃z
(
z > x ∧ ¬Prov(Sub(y, pzq))

)
Then by Lemma 24, there is a formula Z(x) such that:

` Z(x)←→ ∃z
(
z > x ∧ ¬Prov(pZ(z)q)

)
And we will have another queue of undecidable sentences.

Theorem 26. If T is ω-consistent, then for any natural number k, the sentence

Z(k) is neither provable nor refutable.

Proof. Let k be a natural number. Suppose Z(k) is refutable.

` ¬Z(k)⇒ ` ¬∃z
(
z > k ∧ ¬Prov(pZ(z)q)

)
(By definition)

⇒ ` ∀z
(
z > k → Prov(pZ(z)q)

)
⇒ ` ∀z

(
z > k + 1→ Prov(pZ(z)q)

)

But by universal instantiation, the fact that ` k + 1 > k, and modus ponens,

we get

` Prov(Z(pk + 1)q)

⇒ ` Z(k + 1) (By Lemma 3)

⇒ ` ∃z
(
z > k + 1 ∧ ¬Prov(pZ(z)q)

)
Hence there is a contradiction.

On the other hand, suppose Z(k) is refutable. Then by the choice of Z(x),

∃z
(
z > k ∧ ¬Prov(pZ(z)q)

)
is provable. By existential elimination, there is an

a such that ¬Prov(pZ(a)q)
)

is provable. But by Lemma 11 this implies that T

is inconsistent.

Therefore if T is ω-consistent, then for any natural number k, the sentence

Z(k) is neither provable nor refutable.
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8 Variants of the Preface Paradox

The preface paradox, first introduced by Makinson (1965), is an epistemic para-

dox. It is about a usual practice that an author claiming, in the preface of the

book, that there will inevitably some errors, mistakes in that book. It seems

that an author can rationally believes all the claims in his or her book, at the

same time believes that he or she is fallible. But then this author is believing

something contradictory, namely, that all the claims in the book are correct,

and some of them are incorrect.

A variant of this paradox is related to the liar paradox: Consider a book

that the author wrote “there are inevitably some (at least one) mistakes” in the

preface. Though usually quite improbable, the rest of the book is correct. Then

the problem is, obviously, the sentence “there are inevitably some (at least one)

mistakes” is correct if and only if it is not. This leads to a liar-like situation,

depending on a contingent fact that the rest of the book is correct.

This section is about three variants of this paradox.

8.1 Variant 1: Someone is wrong

To proceed further, let us change the metaphor. Suppose there are some people

in a room, everyone writes a sentence on a paper and there are no other things

in that room. If one of them writes that “At least one of the sentences written

in this room is not true”, while the others are writing, say, “1 + 1 = 2”, then it

becomes the same situation as the previous paradox.

Now what if everyone writes “At least one of the sentences written in this

room is not true”? If there is only one people, it becomes a version of liar

paradox, as the only sentence written is referring to itself and saying that it is

not true.

If there are more than one people, say n people, and let one of these sentence

be true, then there is another sentence that is not true. By the falsity17 of the

latter sentence, all sentences written in that room are true, which is a plain

contradiction to the very same sentence. Thus we can see that every sentence

in such a situation is true if and only if it is not.

17Let us assume the principle of bivalence here.
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It may sound like a variant of circular liars, but unlike circular liars, this

paradox can be extended to the infinite case, which resembles the Yablo’s para-

dox 18. So if there are infinitely many people in the room (assuming that it is

possible) and every one of them is writing that sentence, there will be a paradox

again.

Again we can formalize this paradox to obtain some undecidable sentences,

for both finite and infinite case.

8.2 Formalization of variant 1

Finite case

First we need another more Generalized Diagonal Lemma:

Lemma 27 ((Really) Generalized Diagonal Lemma). Let x0, x1, . . . , xn, y1, . . . , ym

be distinct variables, ϕ0(x0, x1, . . . , xn,y), ϕ1(x0, x1, . . . , xn,y), . . . , ϕn(x0, x1, . . . , xn,y)

be formulas in which all free variables are among x0, x1, . . . , xn,y (where y is the

abbreviation of y1, . . . , ym). Then there exists formulas ψ0(y), ψ1(y), . . . , ψn(y)

with free variables y such that:

`ψ0(y)←→ ϕ0(pψ0(y)q, pψ1(y)q, . . . , pψn(y)q,y)

`ψ1(y)←→ ϕ1(pψ0(y)q, pψ1(y)q, . . . , pψn(y)q,y)

...
...

`ψn(y)←→ ϕn(pψ0(y)q, pψ1(y)q, . . . , pψn(y)q,y)

A proof can be found in (Boolos, 1993). The basic idea of the proof is again

using substitution, but a more complicated one. So we skip the proof.

In the following, we write Conn(x0, x1, . . . , xn) to abbreviate the expression

Con(. . . Con(Con(︸ ︷︷ ︸
n-many ’Con(’s

x0, x1), x2), . . .), xn).

Let n be a fixed natural number. For any 0 ≤ k ≤ n, take ϕk(x0, x1, . . . , xn)

be the formula ¬Prov(Conn(x0, x1, . . . , xn)). By the above Generalized Diag-

onal Lemma, there are sentences A0,A1, . . . ,An such that for any 0 ≤ k ≤ n,

the sentence Ak ←→ ¬Prov(Conn(pA0q, pA1q, . . . , pAnq)) is provable. It is

18But they are not the same.
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not difficult to see that such a sentence is provably equivalent to the sentence

Ak ←→ ¬Prov(pA0 ∧A1 ∧ . . . ∧Anq).

Then we have the following result:

Theorem 28. If T is ω-consistent, then for any 0 ≤ k ≤ n, Ak is neither

provable nor refutable.

Proof. Suppose T is ω-consistent. Let 0 ≤ k ≤ n. Suppose Ak is provable.

Then ¬Prov(pA0 ∧ A1 ∧ . . . ∧ Anq) is also provable. By Lemma 11, it is

impossible.

Suppose Ak is refutable. Then:

` ¬Ak ⇒ ` Prov(pA0 ∧A1 ∧ . . . ∧Anq) (By the choice of Ak)

⇒ ` A0 ∧A1 ∧ . . . ∧An (By Lemma 3)

⇒ ` Ak (By conjunction elimination)

And we get a contradiction, as by our assumption T is consistent.

Therefore if T is ω-consistent, then all of the sentences A0,A1, . . . ,An are

neither provable nor refutable.

Using this Generalized Diagonal Lemma, we can also formalize the circular

liars and get another family of undecidable sentences: Fixed a positive number

n, for k < n, let ϕk(x0, x1, . . . , xn) be ¬Prov(xk+1), and let ϕn(x0, x1, . . . , xn)

be Prov(x0). The fixed points of these open formulas will have a circular liar

like structure, and it is easy to see that if T is ω-consistent, then none of them

is decidable.

Infinite case

For the infinite case, we can use a similar trick as in the formalization of Yablo’s

paradox. Consider the open formula:

∃z
(
¬Prov(Sub(x, pzq))

)
∧ (0 ≤ y)

Then by Lemma 24 there is an open formula P(y) with one free variable y
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such that

` P(y)←→ ∃z
(
¬Prov(Sub(pP(y)q, pzq))

)
∧ (0 ≤ y)

←→ ∃z
(
¬Prov(pP(z)q)

)
∧ (0 ≤ y)

←→ ∃z
(
¬Prov(pP(z)q)

)

We have the following result:

Theorem 29. If T is ω-consistent, then for any natural number k, P(k) is

neither provable nor refutable.

Proof. Suppose T is ω-consistent, let k be a natural number. Suppose P(k)

is provable. Then by the choice of P(y), ∃z
(
¬Prov(pP(z)q)

)
is also provable.

By existential instantiation, there is an a such that ¬Prov(pP(a)q) is provable.

But by Lemma 11 this is impossible.

On the other hand, suppose P(k) is refutable. Then:

` ¬P(k)⇒ ` ¬∃z
(
¬Prov(pP(z)q)

)
(By the choice of P(y))

⇒ ` ∀zProv(pP(z)q)

⇒ ` Prov(pP(k)q) (By universal instantiation)

⇒ ` P(k) (By Lemma 3)

By our assumption on the consistency of T, this is impossible.

Therefore if T is ω-consistent, then for any natural number k, P(k) is neither

provable nor refutable.

8.3 Variant 2: Someone else is wrong

Consider a situation similar to the previous paradox, except that everyone writes

that “At least one of the sentences other then this one written in this room is

not true”. In other words, they are say that “someone else is wrong”.19

19A note after finishing this section: Professor András Máté points out that this variant

resembles a paradox by Jean Buridan, which says that “Socrates says that Plato tells a lie,

Plato says that Socrates tells a lie.” This paradox is also called the No-No paradox in Sorensen

(2004), which further contains a finite case of the paradox in this subsection.
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When there is only one person in the room, the only sentence is false since

there is no other sentences. However, if there are more than one people, the

situation becomes paradoxical, not in the sense that there will be sentences that

are true if and only if they are false, but the truth values of them seems to be

arbitrary. This can be illustrated by the four people case (any number larger

than one will do the job)20.

Let S1, S2, S3, S4 be four sentences, each of them saying that some of the

other sentences is not true. To be precise, let S1 be “It is not the case that

S2, S3, S4 are all true”, S2 be “It is not the case that S1, S3, S4 are all true”, S3

and S4 can be defined similarly.

Suppose S1 is true, then at least one of S2, S3, S4 is not true. Let S2 be

false21, then S1, S3, S4 are all true, and there is no contradiction. It is easy to

check that there is no contradiction if and only if exactly one sentence is not

true, but it does not matter which one is the false sentence.

In other words, we can assign the truth values of the sentence arbitrarily,

under the condition that exactly one sentence is not true. Hence it is like

the truth-teller, i.e. the sentence “This sentence is true”, that the truth value

assignment is kind of bootstrapping.

By Löb’s theorem, the Henkin sentence, which is a formalized version of the

truth teller, is provable. Nevertheless, if we formalized the above paradox by

using the provability predicate, the sentences obtained are undecidable.

8.4 Formalization of variant 2

First we formalize the finite case. Let n be a natural number, P0(x0, x1, . . . , xn)

be the formula ¬Prov
(
Conn−1(x1, x2, . . . , xn)

)
. For every 0 < k < n, let

Pk(x0, x1, . . . , xn) be the formula ¬Prov
(
Conn−1(x1, x2, . . . , xk−1, xk+1, . . . , xn)

)
.

Finally let Pn(x0, x1, . . . , xn) be the formula ¬Prov
(
Conn−1(x0, x1, . . . , xn−1)

)
.

By the Generalized Diagonal Lemma there are sentences B0,B1, . . . ,Bn

20The same holds for the infinite case.
21Again we assume the principle of bivalence here.
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such that

`B0 ←→ ¬Prov(pB1 ∧B2 ∧ . . . ∧Bnq)

`B1 ←→ ¬Prov(pB0 ∧B2 ∧ . . . ∧Bnq)

...
...

`Bn ←→ ¬Prov(pB0 ∧B1 ∧ . . . ∧Bn−1q)

Theorem 30. If T is ω-consistent, then for any 0 ≤ k ≤ n, Bk is neither

provable nor refutable.

Proof. Suppose T is ω-consistent. Let 0 ≤ k ≤ n. Suppose Bk is provable. Then

by the choice of Bk, the sentence ¬Prov(pB0∧B1∧. . .∧Bk−1∧Bk+1∧. . .∧Bnq)

is also provable. But this is impossible by Lemma 11.

On the other hand, suppose Bk is refutable. Then:

` ¬Bk

⇒ ` Prov(pB0 ∧B1 ∧ . . . ∧Bk−1 ∧Bk+1 ∧ . . . ∧Bnq) (By the choice of Bk)

⇒ ` B0 ∧B1 ∧ . . . ∧Bk−1 ∧Bk+1 ∧ . . . ∧Bn (By Lemma 3)

⇒ ` B0 (By conjunction elimination)

However, by the first part of the proof, we know that it is impossible. There-

fore Bk is neither provable nor refutable.

For the infinite case, consider the following open formula:

∃z
(
z 6= y ∧ ¬Prov(Sub(x, pzq))

)
By the Generalized Diagonal Lemma, there is an open formula Q(y) with

one free variable y such that Q(y)←→ ∃z
(
z 6= y∧¬Prov(pQ(z)q)

)
is provable.

Theorem 31. If T is ω-consistent, then for any natural number k, Q(k) is

neither provable nor refutable.

Proof. Suppose T is ω-consistent. Let k be a natural number. Suppose Q(k)

is provable, then by the choice of Q(y), ∃z
(
z 6= k ∧ ¬Prov(pQ(z)q)

)
is also

provable. By existential instantiation, there is an a such that ¬Prov(pQ(a)q)

is provable. But by Lemma 11 this is impossible.
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On the other hand, suppose Q(k) is refutable. Then:

` ¬Q(k)⇒ ` ¬∃z
(
z 6= k ∧ ¬Prov(pQ(z)q)

)
(By the choice of Q(y))

⇒ ` ∀z
(
z 6= k → Prov(pQ(z)q)

)
⇒ ` Prov(pQ(k + 1)q) (By Universal Instantiation, ` k + 1 6= k)

⇒ ` Q(k + 1) (By Lemma 3)

But by the first half of this proof we know that it is impossible. Therefore,

for any natural number k, Q(k) is neither provable nor refutable.

8.5 Variant 3: At least k people are wrong

Consider another situation with similar setting, where there are n people and

they queue up. The kth person writes that “There are at least k sentences which

are not true”22, in other words, he or she is saying that “at least k people are

wrong”23.

If there is only one person in the room, then it is again the liar paradox.

However, if there are more than one people in the room, unlike the previous

situations, it is not entirely paradoxical (but still a little bit paradoxical, in

some cases).

Obviously either all of them are right, or someone is wrong, in both cases

the first person is right, hence someone is wrong, in particular the last person

is wrong. Furthermore, if someone is right, everyone before him or her is also

right; conversely if someone is wrong, everyone after him or her is also wrong.

Since someone is wrong, there must be someone who is the first person who is

wrong. Let that person be the kth0 person, then at most k0−1 people are wrong.

At the same time, the (k0 − 1)st person is right by definition of k0, so at least

k0 − 1 people are wrong. Combining these two results, we know that there are

exactly k0 − 1 people are wrong.

But everyone after the kth0 person is wrong, by a simple calculation24 we can

conclude that k0 − 1 is a half of n. Therefore, if n is even, then people in the

22Except for the first one, who should write “There is at least 1 sentence which is not true”,

for grammatical reason.
23For convenience, we may say “someone is right” instead of saying that the corresponding

sentence is true.
24n− k0 + 1 = k0 − 1⇒ n = 2(k0 − 1)
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first half of the queue are right, and those in the second half are wrong. There

is nothing paradoxical at all.

However if n is odd, we can deduce that the first person is right and the

last one is wrong, similarly the second one is right and the second-last person is

wrong, and so on. Then the person who stands in the exact middle of the queue

is in a liar paradox like situation, while everyone before him or her is right and

everyone after is wrong.

Things get more interesting and paradoxical when, as always, infinity comes

into the picture. If there are infinitely many people in a queue, the kth is saying

that “At least k people are wrong”, then saying any one of them is right or

wrong will lead to contradiction. For, suppose the kth person is wrong, then

there are at most k − 1 people are wrong. But everyone after the kth person is

wrong, and there are more than k people no matter how large k is, so there is

a contradiction. On the other hand, if the kth person is right, then someone is

wrong, but we know that it leads to a contradiction.

8.6 Formalization of variant 3

As in the finite case the situations are not really new, we will concentrate on

formalizing the infinite case, which is slightly more complicated than previous

variants.

At the first sight, it seems that we can get a fixed point of a formula using

the usual ∃k quantifier. However this is an abbreviation at the meta-level, to do

things in the object level, we need to refer to a set of numbers indirectly. The

idea is to refer to a sequence with length k where no two terms are the same,

and then we can refer to those terms in the formula we need.

Let us introduce two definitions:

• HetSeq(x) ←→ Code(x) ∧
(
∀y ≤ l(x)

)(
∀z ≤ l(x)

)(
y 6= z → Dec(y, x) 6=

Dec(z, x)
)

If HetSeq(x) is provable, then x is a code number of a sequence where no

two terms are the same.

• Ele(x, y)←→ Code(y) ∧
(
∃u ≤ l(y)

)(
Dec(u, y) = x

)
If Ele(x, y) is provable, then x represents a number which is a term of the
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sequence represented by y.

• Trun(1, x) = µy
[
(y ≤ x) ∧ Pr

(
l(x)

)Dec
(
l(x),x

)
× y = x

]
Trun(n+ 1, x) = Trun

(
Trun(n, x)

)
If x is a code number, then Trun(n, x) is the code number of the sequence

obtained by deleting the last n terms.

We will use the following facts.

Let c be a code number with length n, and k < n. Then:

1. If HetSeq(c) is provable, then HetSeq(Trun(k, c)) is also provable.

2. ∀x
[
Ele(x, Trun(k, c))→ Ele(x, c)

]
is provable.

3. Ele
(
Dec(k, c), c

)
is provable.

Proofs of the above two facts will be skipped.

Then consider the open formula

∃z
[
HetSeq(z) ∧ l(z) = Sy ∧ (∀t ≤ z)

[
Ele(t, z)→ Prov

(
Neg(Sub(x, ptq))

)]]
By the Generalized Diagonal Lemma, there is an open formula R(y) such

that

` R(y)←→ ∃z
(
HetSeq(z)∧l(z) = Sy∧(∀t ≤ z)

(
Ele(t, z)→ Prov(p¬R(t)q)

))
We have the following two lemmas:

Lemma 32. If m,n are natural numbers and m < n, then ` R(n)→ R(m).

Proof. Let m+ d = n. Suppose ` R(n). Then by the choice of R(y):

` ∃z
(
HetSeq(z) ∧ l(z) = Sn ∧ (∀t ≤ z)

(
Ele(t, z)→ Prov(p¬R(t)q)

))
Then by existential instantiation, there is an a such that

`
(
HetSeq(a) ∧ l(a) = Sn ∧ (∀t ≤ a)

(
Ele(t, a)→ Prov(p¬R(t)q)

))
Let b = Trun(d, a). By the two facts above, it is not difficult to see that

`
(
HetSeq(b) ∧ l(b) = Sm ∧ (∀t ≤ b)

(
Ele(t, b)→ Prov(p¬R(t)q)

))
Therefore ` R(m). By the deduction theorem we get ` R(n)→ R(m).

Lemma 33. If m,n are natural numbers and m > n, then ` ¬R(n)→ ¬R(m).

Proof. By Lemma 32 we have ` R(m)→ R(n), which implies the contrapositive

of the formula, therefore ` ¬R(n)→ ¬R(m).
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Now we can prove the following result:

Theorem 34. If T is ω-consistent, then for any natural number n, R(n) is

neither provable nor refutable.

Proof. Suppose T is ω-consistent. Let n be a natural number.

Suppose R(n) is refutable, then ` ¬R(n).

By Lemma 33, for every m > n, R(m) is refutable. Therefore the sentences

¬R(n),¬R(n+ 1), . . . ,¬R(n+ n) are all provable, by Lemma 2 the sentences

Prov(p¬R(n)q), P rov(p¬R(n+ 1)q), . . . , P rov(p¬R(n+ n)q) are also provable.

Let c be the code number of the sequence (n, n+ 1, . . . , n+ n)25. Then the

sentences HetSeq(c), l(c) = Sn, and (∀t ≤ c)
(
Ele(t, c) → Prov(p¬R(t)q)

)
are

all provable. This implies that R(n) is provable and we get another contradic-

tion.

Suppose R(n) is provable. Then ∃z
(
HetSeq(z)∧l(z) = Sn∧(∀t ≤ z)

(
Ele(t, z)→

Prov(p¬R(t)q)
))

is also provable.

By ω-consistency, there is an number c such that

`
(
HetSeq(c) ∧ l(c) = Sn ∧ (∀t ≤ c)

(
Ele(t, c)→ Prov(p¬R(t)q)

))
⇒ ` (∀t ≤ c)

(
Ele(t, c)→ Prov(p¬R(t)q))

))
(By conjunction elimination)

⇒ ` Prov(p¬R(Dec(1, c)q) (By fact 3)

But it is impossible by the first half of this proof, so R(n) is not provable.

Therefore R(n) is neither provable nor refutable.

9 The Surprise Examination Paradox

The surprise examination (or test) paradox, or the unexpected hanging paradox,

is a paradox about a person’s belief or expectation on the time of an event, which

is told to be unexpected. It has various formulation, here we give one:

A teacher tells the students that there will be an unexpected

examination in a day on the next week, they will not know which

day it is until that very day the teacher enters the classrooms with

the examination papers.

25Which is the number 2n+1 × 3n+2 × . . .× p2n+1
n .
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A student start thinking: The examination cannot be held on

Friday, otherwise they can deduce the examination will be on Friday,

from the fact that there is no examination on Monday to Thursday26,

on Thursday after school.

Then the remaining possibilities are Monday to Thursday. But

if it is on Thursday, the students will know it on Wednesday after

school, by a similar reasoning. By repeating this process, the stu-

dent concludes that the examination cannot be held on Wednesday,

Tuesday and Monday, but that means there cannot be an unex-

pected examination at all. The student tells this discovery to other

classmates, so they just ignore what the teacher says.

Eventually, there is an examination on Wednesday, and the stu-

dents are surprised.

In Sorensen (1993), there is a different but related paradox called the earliest

unexpected class inspection paradox. It can be presented in the following way:

You are a new teacher, and you are told that there will be a class

inspection. There are two conditions on the date of the inspection:

first, the sooner the better; second, you do not know and cannot

guess the day so that you cannot prepare for it. Therefore, the

inspection will be on the first day which you do not believe there

will be a class inspection.

Now, the next school day is the first available day for class in-

spection, but then the inspection cannot be on that day since you

can reason it. Similarly you can rule out the possibilities of the in-

spection being on the second day, the third day, the fourth day, and

so on. Hence the earliest unexpected class inspection is impossible.

Though the reasoning processes in the two paradoxes seems to be different,

namely, one is backward in time and another is forward in time, their structures

are similar: First, an event, a surprise examination or an unexpected class

inspection, cannot be on the first day (in the surprise examination case, we

count backward from the last day). Second, if it cannot be on the first k days,

26Let us assume that they go to school on Monday to Friday.
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then it cannot be on the (k + 1)st day. Therefore the event cannot happen at

all.

This is obviously the strong (mathematical) induction. For the surprise

examination paradox, we only need to add an extra upper bound, that is, the

total number of days.

9.1 Fitch’s formalization

Frederic Fitch gave a formalization of the surprise examination paradox in Fitch

(1964), as presented below with some modifications27.

First, let n be a natural number, and D1,D2, . . .Dn denote sentences rep-

resenting “the examination occurs on the first day”, “the examination occurs

on the second day”, . . ., “the examination occurs on the nth day” respectively.

Notice that these symbols should be taken as extra constants, which are not

in our original language. Hence in this subsection we are working in a theory

which extends T with these symbols, let us call it T’.

In the following, we use the symbol = for the “exclusive or”, that is, P = Q

is defined as ¬P ↔ Q. And we will use two facts:

1. P = Q implies P ∨Q.

2. (P = Q) = R and ¬R implies P = Q.

The idea is that, we want to find a formula E such that we cannot deduce

D1 from E, D2 from E and ¬D1, and so on. This is similar to the reasoning

of the student, but of course here we use the Diagonal Lemma, and we use

¬Prov(Imp(x, y)) for “cannot deduce X from Y ” (where x and y are Gödel

numbers of X and Y respectively).

Then consider the open formula[
D1 ∧ ¬Prov

(
Imp(x, pD1q)

)]
=
[
D2 ∧ ¬Prov

(
Imp(Con(x, p¬D1q), pD2q)

)]
=

. . .=
[
Dn ∧ ¬Prov

(
Imp(Conn−1(x, p¬D1q, p¬D2q, . . . , p¬Dn−1q), pDnq)

)]
By the Diagonal Lemma, there is a sentence E such that

` E←→
{[

D1 ∧ ¬Prov
(
pE→ D1q

)]
=
[
D2 ∧ ¬Prov

(
p(E ∧ ¬D1)→ D2q

)]
=

. . .=
[
Dn ∧ ¬Prov

(
p(E ∧ ¬D1 ∧ ¬D2 ∧ . . . ∧ ¬Dn−1)→ Dnq

)]}
27e.g. Using different letters and notations.
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Then we have the following result:

Theorem 35. If T’ is consistent, then E is not provable, it is in fact refutable.

Proof. By the choice of E and the fact that P = Q implies P ∨ Q, we have

E→ (D1 ∨D2 ∨ . . . ∨Dn). Then:

` E ∧ ¬D1 ∧ ¬D2 ∧ . . . ∧ ¬Dn−1)→ Dn (By propositional logic)

⇒ ` Prov
(
p(E ∧ ¬D1 ∧ ¬D2 ∧ . . . ∧ ¬Dn−1)→ Dnq

)
(By Lemma 2)

⇒ ` ¬
[
Dn ∧ ¬Prov

(
p(E ∧ ¬D1 ∧ ¬D2 ∧ . . . ∧ ¬Dn−1)→ Dnq

)]
(By ∨-introduction)

Therefore, by fact 2 above, we get E →
{[

D1 ∧ ¬Prov
(
pE → D1q

)]
=[

D2∧¬Prov
(
p(E∧¬D1)→ D2q

)]
= . . .=

[
Dn∧¬Prov

(
p(E∧¬D1∧¬D2∧

. . . ∧ ¬Dn−2)→ Dn−1q
)]}

.

Similarly we can “remove” the other parts in the formula one by one, finally

we get

` E→
[
D1 ∧ ¬Prov

(
pE→ D1q

)]
⇒ ` E→ D1

⇒ ` Prov(pE→ D1q) (By Lemma 2)

⇒ ` ¬E

Fitch concluded that the paradox is only a paradox in the rather weak sense

that the teacher’s claim is self-contradictory. Then he showed that if we modify

the above formula and obtain the following fixed point Ė where

` Ė←→
{
Prov(pĖq)→

[[
D1 ∧ ¬Prov

(
pĖ→ D1q

)]
=
[
D2 ∧ ¬Prov

(
p(Ė ∧ ¬D1)

→ D2q
)]

= . . .=
[
Dn ∧ ¬Prov

(
p(Ė ∧ ¬D1 ∧ ¬D2 ∧ . . . ∧ ¬Dn−1)→ Dnq

)]]}
then Ė is a fixed point of ¬Prov(x), hence undecidable.

However, Fitch’s conclusion maybe too strong and too quick for two reason.

The first reason is that he substitute knowability in the paradox by provability

in his formulation, and this substitution is not self-evident. The second reason

is, there maybe other ways to formalize the paradox. Also his undecidable

proposition is not entirely interesting, as we cannot get rid of using the symbols

D1,D2, . . . ,Dn, which are not in our original theory.
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9.2 Another formalization

In this subsection, we will formalize Sorensen’s earliest unexpected class inspec-

tion paradox. With a slight modification, this formalization can also be an

alternative formulation of the surprise examination paradox.

As we have seen above, the reasoning in the paradox is actually strong

induction. This leads us to the idea of using the following open formula:

(∀z < y)Prov
(
Neg(Sub(x, pzq))

)
→ Prov

(
Neg(Sub(x, pyq))

)
Apply the Generalized Diagonal Lemma, we will get a fixed point F(y) such

that

F(y)←→
[
(∀z < y)Prov

(
p¬F(z)q

)
→ Prov

(
p¬F(y)q)

)]
is provable.

Then we have the following result:

Theorem 36. If T is ω-consistent, then ∃xF(x) is undecidable.

Before proving this theorem, we need to state the following fact:

Proposition 37 (The Least Number Principle). For any open formula P (x)

with exactly one free variable x, it is provable that ∃xP (x)→ ∃x
(
P (x) ∧ (∀y <

x)¬P (y)
)

The proof of this principle, which can be found in (Boolos, 1993), is skipped

here. Now we can prove Theorem 36.

Proof. Assume T is ω-consistent. Suppose ∃xF(x) is provable, then by the

Least Number Principle, ∃x
(
F(x) ∧ (∀z < x)¬F(z)

)
is also provable.

By ω-consistency of T, there is an n such that (∀z < n)¬F(z) ∧ F(n) is

provable. Then (∀z < n)¬F(z) is provable, by substitution and modus ponens

we have ¬F(0),¬F(1), . . . ,¬F(n− 1) are all provable. Hence by Lemma 2,

Prov(p¬F(0)q), P rov(p¬F(1)q), . . . , P rov(p¬F(n− 1)q) are all provable, so is

(∀z < n)Prov(p¬F(z)q).

Since F(n) is also provable, we have:

` F(n)⇒ `
[
(∀z < n)Prov

(
p¬F(z)q

)
→ Prov

(
p¬F(n)q)

)]
(By the choie of F(x))

⇒ ` Prov
(
p¬F(n)

)
(By modus ponens)

⇒ ` ¬F(n) (By Lemma 3)
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So we get a contradiction, and ∃xF(x) is not provable.

On the other hand, suppose ∃xF(x) is refutable. Then ¬∃xF(x), and equiv-

alently, ∀x¬F(x) are provable. For any natural number n, we have:

` ¬F(n) (By universal instantiation)

⇒ ` (∀z < n)Prov
(
p¬F(z)q

)
∧ ¬Prov(p¬F(n)q) (By the choice of F(x))

⇒ ` ¬Prov(p¬F(n)q) (By conjunction elimination)

But by Lemma 2, ¬F(n) is provable implies that Prov(p¬F(n)q) is also prov-

able. Hence we get a contradiction.

Therefore, ∃xF(x) is neither provable nor refutable.

Roughly speaking, F(n) is related to the proposition “there will be a class

inspection at the (n + 1)st day”28. And it satisfies the condition that if it is

deducible that there is no class inspection at the first n day, then it is deducible

that there is no class inspection at the (n+ 1)st day.

For the surprise examination paradox, we just need to add an upper bound

for the variable, say, N . There is a fixed point FN(y) such that

FN(y)←→
[
(y < N) ∧

[
(∀z < y)Prov

(
p¬FN(z)q

)
→ Prov

(
p¬FN(y)q)

)]]
is provable. And we have the following theorem:

Theorem 38. If T is ω-consistent, then (∃x < N)FN(x) is undecidable.

Proof. Assume T is ω-consistent. Suppose (∃x < N)FN(x) is provable, then

by the Least Number Principle, ∃x
[(

(x < N) ∧ FN(x)
)
∧ (∀z < x)¬

(
(z <

N) ∧ FN(z)
)]

is also provable.

Since it is provable that
(
(x < N) ∧ (z < x)

)
→ z < N , the latter sentence

is the last paragraph is equivalent to ∃x
(
(x < N) ∧ FN(x) ∧ (∀z < x)¬FN(z)

)
.

Then there is some n < N such that (n < N) ∧ FN(n) ∧ (∀z < n)¬FN(z) is

provable.

As in the previous proof, from (∀z < n)¬FN(z) we can derive, by substi-

tution and modus ponens, that ¬FN(0),¬FN(1), . . . ,¬FN(n − 1). Therefore

Prov(p¬FN(0)q), P rov(p¬FN(1)q), . . . , P rov(p¬FN(n − 1)q) are all provable,

so is (∀z < n)Prov(p¬FN(z)q).

28Note that we count from 0.
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Since FN(n) is also provable, we have:

` FN(n)

⇒ ` (n < N) ∧
[
(∀z < n)Prov

(
p¬FN(z)q

)
→ Prov

(
p¬FN(n)q)

)]
(By definition)

⇒ ` (∀z < n)Prov
(
p¬FN(z)q

)
→ Prov

(
p¬FN(n)q)

)
(By ∧-elimination)

⇒ ` Prov
(
p¬FN(n)

)
(By modus ponens)

⇒ ` ¬FN(n) (By Lemma 3)

Hence there is a contradiction, and (∃x < N)FN(x) is not provable.

On the other hand, suppose (∃x < N)FN(x) is refutable. Then the sentence

¬(∃x < N)FN(x) is provable, so is (∀x < N)¬FN(x). For any number n < N ,

we have n < N provable, and:

` ¬FN(n)

⇒ ` ¬(n < N) ∨ (∀z < n)Prov
(
p¬FN(z)q

)
∧ ¬Prov(p¬FN(n)q) (By definition)

⇒ ` (n < N)→ (∀z < n)Prov
(
p¬FN(z)q

)
∧ ¬Prov(p¬FN(n)q) (By definition)

⇒ ` (∀z < n)Prov
(
p¬FN(z)q

)
∧ ¬Prov(p¬FN(n)q) (By modus ponens)

⇒ ` ¬Prov(p¬FN(n)q) (By ∧-elimination)

But by Lemma 2, ¬FN(n) is provable implies that Prov(p¬FN(n)q) is also

provable. Hence there is a contradiction.

Therefore (∃x < N)FN(x) is undecidable.

Some may argue that these are not accurate formalizations of the paradoxes,

since the unexpected events in both paradoxes are unique, but the above unde-

cidable sentences involve only existential quantifiers and there is nothing about

the uniqueness.

This problem can be solved easily by noting that for any open formula P (x)

with one free variable x, ∃xP (x) is provably equivalent to ∃x
(
P (x) ∧ (∀y <

x)¬P (y)
)
. One direction of the equivalence is the Least Number Principle,

while the other direction is trivial.

Hence from Theorem 36 and Theorem 38, we have the following corollaries:

Corollary 39. If T is ω-consistent, then ∃x
(
F(x) ∧ (∀y < x)¬F(y)

)
is unde-

cidable.
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Corollary 40. If T is ω-consistent, then ∃x
[
(x < N)∧FN(x)∧(∀y < x)¬

(
(y <

N) ∧ F(y)
)]

is undecidable.

10 Concluding Remarks

The above survey suggests the claim that for many logical paradoxes there

are corresponding undecidable sentences. However it should not be taken as a

rigorous proof of the claim “for every logical paradox there is a corresponding

undecidable sentence.” for a few reasons.

First, this survey is by no means complete. Second, it seems that it can

never be complete, unless we can prove that there is no more logical paradoxes

other than the current ones, which sounds quite implausible. Third, even if it is

only about the logical paradoxes we know, we still need a systematic analysis on

the logical structures of the paradoxes, and then “translate” them into different

undecidable sentences. This project is far beyond the scope of this thesis.

Furthermore, the relationship between the paradoxes and undecidable sen-

tences above is also questionable. For example, in the last section we have

seen that Fitch’s conclusion that the surprise examination paradox is not a real

paradox but a self-contradictory claim, while there is another formulation of the

same paradox which is not contradictory but undecidable in Peano arithmetic.

In Kritchman and Raz (2010) there is also a proof of the Second Incompleteness

Theorem based on Chaitin’s proof and the surprise examination paradox.

I am not saying that my formulation is the correct one (this is not my purpose

to formulate it), but what should be seen as an accurate formalization should be

further discussed. Therefore we should not draw too many conclusions from the

undecidable sentences except that they are undecidable in Peano arithmetic.
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