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Next goal: formalize derivability

Construct a (hyper)calculus H2 such that if the calculus C
derives the string c then H2 derives a string that is the

translation of C 7→ c.
We extend H1 (dropping the release rule 13∗) to the calculus

H2.

Two new auxiliary letters: D for derivable and S for

substitution. In more details:

xDy: the calculus x derives the string y

vSuSySx: if we substitute the word y for the variable x, we
get the string v from the string u. Remember that words

are variable-free strings.

In the above description of the intended meaning, I have

dropped the phrase `translation of'. But never forget that we

speak here not about the letters, variables, etc. of our

hypercalculus, but about the strings translating the letters etc.

of the original calculus.
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H2: the de�nition of substitution

Substitution needs an inductive de�nition, too. Base: The

substitution of the variable x by the word y makes y from x
(rule 18.) and leaves any other character � letters (14.), the

arrow (15.), other variables (16.-17) � unchanged. Inductive rule:

If the substitution makes v from u and w from z, then from their

concatenation uz it makes the concatenation of the results vw.

14. Lu → uSuSySx

15. ≫ S ≫ SySx

16. V x → Iz → xβzSxβzSySx

17. V x → Iz → xSxSySxβz

18. V x → Wy → ySxSySx

19. vSuSySx → wSzSySx → vwSuzSySx
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H2: the de�nition of derivability

Base: every calculus derives its rules. (In details: an one-rule

calculus derives the rule, and longer calculi derive their last,

�rst and middle rules.) Inductive rules are substitution and

detachment.

20. Rx → xDx

21. Rx → Ky → y ∗ xDx

22. Rx → Ky → x ∗ yDx

23. Rx → Ky → Kz → y ∗ x ∗ zDx

24. zDu → vSuSySx → zDv

25. xDy → xDy ≫ z → xDz

The calculus H2 consisting of the rules 1-25 derives Ka, Wb
and aDb i� a is the translation of some calculus C, b is the
translation of a word c of the alphabet of C and C derives c. We

can't give suitable release rules here.
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The calculus H3

H2 (over an alphabet Acc plus 9 auxiliary letters) derives strings

with the intended meanings �a is a calculus�, �b is a string of the

alphabet of a�, �a derives b�. (a and b are translations, codes of a

calculus resp. word in Acc.)

The calculus H3 is an extension of H2. It renders numerals to

every Acc-string. (This is in e�ect a Gödel numbering.)

Numerals: strings consisting of α-s only.

First step: introduce a lexicographic ordering of Acc-strings.

New auxiliary letter: F for the relation `follows'.

I. e., xFy should mean that the string y follows x in the

lexicographic ordering.

Base: α follows the empty word.

Inductive rules de�ne the follower of a string according to its

last letter.
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Lexicographic ordering

26. Fα

27. xαFxβ

28. xβFxξ

29. xξFx ≫
30. x ≫ Fx∗
31. xFy → x ∗ Fyα

From the language radix axioms it follows that:

Every Acc-string has one and only one follower;

Except of the empty string, each string is the follower of one

and only one string.

The empty string is not a follower of anything.

I. e., strings with the empty string as 0 and this follower-relation

as the successor-function ful�l axioms of primitive Peano

arithmetics without mathematical induction.
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Gödel numbering of Acc-strings

Now we can add the (Gödel-)numbering to our calculus on the

trivial way.

G is a a new auxiliary letter, intended meaning of xGy: y is the

ordinal number of x in the lexicographic ordering.

Basis: the ordinal number of the empty string is the empty

string itself.

Inductive rule: to get the number of the follower of a string x we

need to add an α to the number of x.

32. G

33. xFy → xGz → yGzα

Our hypercalculus H3 now consists of the rules 1-33. and it

su�ces to prove at least one important incompleteness result.
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Autonomous numerals

Be C an arbitrary calculus.

An Acc-word a is the translation of C into our language; H3

derives Ka.
There is a numeral c s.t. H3 derives aGc, i. e. the Gödel number

of C is c.

Does C derive a string whose translation is c?
Be C a calculus with this property (deriving its own Gödel

number).

Then H3 derives aDc, too.
Let us call such c-s autonomous numbers.

Let us extend H3 to de�ne autonomous numbers.

New auxiliary letter: A with the intended meaning

�autonomous�. New rule:

34. xDy → xGy → Ay
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Our Gödel-like theorem

The numbers are the strings of the one-letter alphabet

A0 = {α}, so their class is A◦
0 and it can be de�ned inductively.

The class of autonomous numerals, in class theoretic notation:

Aut = {x : x ∈ A◦
0 ∧H3 7→ Ax}

By adding a release rule deleting A to H3, we gain a de�nition

of Aut by a canonical calculus.

We prove that the string class A◦
0 −Aut (the class of

non-autonomous numerals) cannot be de�ned inductively.

Theorem: There is no canonical calculus C over some B ⊇ Acc

s.t. for any string x,

C 7→ x ⇔ x ∈ A◦
0 −Aut
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Proof of the theorem

Let us assume toward contradiction that we have a calculus C
with the Gödel number g s.t for every non-autonomous numeral

c, C 7→ c, and there is no autonomous numeral d for that

C 7→ d.

Suppose that C 7→ g. In this case, C is an autonomous calculus,

g is an autonomous number, therefore C does not derive g.
Contradiction.

Suppose that C does not derive g. In this case, C is not an

autonomous calculus, g is a non-autonomous number, therefore

C 7→ g. Contradiction again, q.e.d.

This theorem is Gödel-like because it shows that no inductive

de�nition can be given for the notion �non-autonomous calculus�

just like Gödel's �rst incompleteness theorem shows that no

inductive de�nition can be given for the notion �arithmetical

truth�. And this proof uses an analogue of the Liar Paradox,

too.
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