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Logical calculi

Logical calculus:

An L family of languages with a distinguished category

FormL;

Inductive de�nition of the syntactic consequence

(deducibility) relation Γ ⊢L A, where Γ ⊆ FormL

(premises) and A ∈ FormL (conclusion).

Base of the inductive de�nition: a class of formulas deducible

from the empty class of premises (basic formulas or logical

axioms).

Inductive rules (rules of deduction, proof rules) prescribe how

you can arrive from some given relations Γ ⊢ A1,Γ ⊢ A2, . . . to
some new relation Γ ⊢ A.
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Logical calculi (continuation)

Di�erent ways to de�ne the deducibility relation: many axioms

and only one or two rules of deduction (Frege-Hilbert style of

calculus) versus no axioms at all, only rules (Gentzen-style or

natural deduction systems).

Equivalence of di�erent calculi (for the same family of

languages): on the natural way (the extension of the relation ⊢
is the same).

A natural demand for the class of logical axioms and the rules of

deduction: they should be decidable.
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First-order languages

All the symbols are strings of some given alphabet A

.

The class of arities A = {∅, o, oo, . . .} was de�ned inductively

earlier.

A �rst-order language L1 is a quintuple

< Log, V ar, Con, Term,Form >

where Log = {(, ), ¬, ⊃, ∀, =} is the class of logical constants,

V ar is the in�nite class of variables de�ned inductively, and

Con = N ∪ P =
⋃

a∈A Pa ∪
⋃

a∈ANa is the class of non-logical

constants containing all the classes Pa of a-ary predicates and

Na of a-ary name functors.

It is assumed that for ai ̸= aj ∈ A, Nai ∩Naj = Pai ∩ Paj = ∅
and N ∩ P = ∅.
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Terms and a-tuples of terms

The class of a-tuples of terms a ∈ A is T (a).

The simultaneous inductive de�nition of the classes Term and

T (a):

1. V ar ⊆ Term

2. T (∅) = {∅}
3. (s ∈ T (a) & t ∈ Term) ⇒ ⌜s(t)⌝ ∈ T (ao)

4. (φ ∈ Na & s ∈ T (a)) ⇒ ⌜φs⌝ ∈ Term
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Formulas

1. π ∈ Pa & s ∈ T (a) ⇒ ⌜πs⌝ ∈ Form

2. s, t ∈ Term ⇒ ⌜s = t⌝ ∈ Form

3. A ∈ Form ⇒ ⌜¬A⌝ ∈ Form

4. A,B ∈ Form ⇒ ⌜A ⊃ B⌝ ∈ Form

5. A ∈ Form & x ∈ V ar ⇒ ⌜∀xA⌝ ∈ Form

Atomic formulas are the formulas generated by the rules 1. and

2.

Other logical constants (∨, ∧, ≡, ∃) are introduced by

abbreviation conventions.

Be A,B ∈ Form. B is a subformula of A i� A is of the form

uBv (u, v ∈ A◦).

If x ∈ V ar and A ∈ Form, an occurrence of x in A is a

bound occurrence of x in A i� it lies in a subformula of A of the

form ∀xB. Other occurrences are called free occurrences.
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Some further auxiliary notions

A term is open i� at least one variable is a substring of it;

otherways it is closed.

A formula is open if it contains at least one free occurrence of a

variable; otherwise it is closed. Closed formulas are called

sentences.

A formula A is free from the variable x i� x has no free

occurrences in A. Γ ⊆ Form is free from x if each member of it

is.

Be A ∈ Form, x, y ∈ V ar. y is substitutable for x in A i� for

every subformula of A of the form ∀yB, B is free from x.

t ∈ Term is substitutable for x in A i� every variable occurring

in t is substitutable. If t is substitutable for x in A, then At/x

denotes (in the metalanguage) the formula obtained from A
substituting t for every free occurrence of x in A.
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The quanti�cation calculus (QC) 1: the axioms

Given a �rst-order language L1, the logical axioms (basic

formulas) are de�ned by the help of the following schemes:

(B1) (A ⊃ (B ⊃ A))

(B2) ((A ⊃ (B ⊃ C) ⊃ ((A ⊃ B) ⊃ (A ⊃ C)))

(B3) ((¬B ⊃ ¬A) ⊃ (A ⊃ B))

(B4) (∀xA ⊃ At/x)

(B5) (∀x(A ⊃ B) ⊃ (∀xA ⊃ ∀xB))

(B6) (A ⊃ ∀xA) provided that A is free from x

(B7) (x = x)

(B8) ((x = y) ⊃ (Ax/z ⊃ Ay/z))

The class BF of logical axioms is de�ned inductively:

i If we substitute for A,B,C formulas, for x, y, z variables

and for t terms of L1 in the above schemes, we get members

of BF .

ii If A ∈ BF and x ∈ V ar, then ⌜∀xA⌝ ∈ BF .
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QC 2: deducibility and some metatheorems

Base for the inductive de�nition of Γ ⊢ A: if A ∈ Γ ∪BF , then

Γ ⊢ A. Inductive rule is detachment: if Γ ⊢ A and Γ ⊢ A ⊃ B,

then Γ ⊢ B.

Deduction Theorem: If Γ ∪ {A} ⊢ C, then Γ ⊢ A ⊃ C.

Cut: If Γ ⊢ A and Γ′ ∪ {A} ⊢ B then Γ ∪ Γ′ ⊢ B.

Universal generalization: If Γ ⊢ A and Γ is free from x, then
Γ ⊢ ∀xA.
Universal generalization 2.: If t ∈ T (∅) s.t. it occurs neither
in A nor in the members of Γ and Γ ⊢ At/x then Γ ⊢ ∀xA.

A de�nition: If A ∈ Form and the variables having free

occurrences in A are x1, x2, . . . xn, then the universal closure of

A is the formula ∀x1∀x2 . . . ∀xnA.

András Máté metalogic 28th April



QC 2: deducibility and some metatheorems

Base for the inductive de�nition of Γ ⊢ A: if A ∈ Γ ∪BF , then

Γ ⊢ A. Inductive rule is detachment: if Γ ⊢ A and Γ ⊢ A ⊃ B,

then Γ ⊢ B.

Deduction Theorem: If Γ ∪ {A} ⊢ C, then Γ ⊢ A ⊃ C.

Cut: If Γ ⊢ A and Γ′ ∪ {A} ⊢ B then Γ ∪ Γ′ ⊢ B.

Universal generalization: If Γ ⊢ A and Γ is free from x, then
Γ ⊢ ∀xA.
Universal generalization 2.: If t ∈ T (∅) s.t. it occurs neither
in A nor in the members of Γ and Γ ⊢ At/x then Γ ⊢ ∀xA.

A de�nition: If A ∈ Form and the variables having free

occurrences in A are x1, x2, . . . xn, then the universal closure of

A is the formula ∀x1∀x2 . . . ∀xnA.

András Máté metalogic 28th April



QC 2: deducibility and some metatheorems

Base for the inductive de�nition of Γ ⊢ A: if A ∈ Γ ∪BF , then

Γ ⊢ A. Inductive rule is detachment: if Γ ⊢ A and Γ ⊢ A ⊃ B,

then Γ ⊢ B.

Deduction Theorem: If Γ ∪ {A} ⊢ C, then Γ ⊢ A ⊃ C.

Cut: If Γ ⊢ A and Γ′ ∪ {A} ⊢ B then Γ ∪ Γ′ ⊢ B.

Universal generalization: If Γ ⊢ A and Γ is free from x, then
Γ ⊢ ∀xA.
Universal generalization 2.: If t ∈ T (∅) s.t. it occurs neither
in A nor in the members of Γ and Γ ⊢ At/x then Γ ⊢ ∀xA.

A de�nition: If A ∈ Form and the variables having free

occurrences in A are x1, x2, . . . xn, then the universal closure of

A is the formula ∀x1∀x2 . . . ∀xnA.

András Máté metalogic 28th April



QC 2: deducibility and some metatheorems

Base for the inductive de�nition of Γ ⊢ A: if A ∈ Γ ∪BF , then

Γ ⊢ A. Inductive rule is detachment: if Γ ⊢ A and Γ ⊢ A ⊃ B,

then Γ ⊢ B.

Deduction Theorem: If Γ ∪ {A} ⊢ C, then Γ ⊢ A ⊃ C.

Cut: If Γ ⊢ A and Γ′ ∪ {A} ⊢ B then Γ ∪ Γ′ ⊢ B.

Universal generalization: If Γ ⊢ A and Γ is free from x, then
Γ ⊢ ∀xA.
Universal generalization 2.: If t ∈ T (∅) s.t. it occurs neither
in A nor in the members of Γ and Γ ⊢ At/x then Γ ⊢ ∀xA.

A de�nition: If A ∈ Form and the variables having free

occurrences in A are x1, x2, . . . xn, then the universal closure of

A is the formula ∀x1∀x2 . . . ∀xnA.

András Máté metalogic 28th April



QC 2: deducibility and some metatheorems

Base for the inductive de�nition of Γ ⊢ A: if A ∈ Γ ∪BF , then

Γ ⊢ A. Inductive rule is detachment: if Γ ⊢ A and Γ ⊢ A ⊃ B,

then Γ ⊢ B.

Deduction Theorem: If Γ ∪ {A} ⊢ C, then Γ ⊢ A ⊃ C.

Cut: If Γ ⊢ A and Γ′ ∪ {A} ⊢ B then Γ ∪ Γ′ ⊢ B.

Universal generalization: If Γ ⊢ A and Γ is free from x, then
Γ ⊢ ∀xA.

Universal generalization 2.: If t ∈ T (∅) s.t. it occurs neither
in A nor in the members of Γ and Γ ⊢ At/x then Γ ⊢ ∀xA.

A de�nition: If A ∈ Form and the variables having free

occurrences in A are x1, x2, . . . xn, then the universal closure of

A is the formula ∀x1∀x2 . . . ∀xnA.

András Máté metalogic 28th April



QC 2: deducibility and some metatheorems

Base for the inductive de�nition of Γ ⊢ A: if A ∈ Γ ∪BF , then

Γ ⊢ A. Inductive rule is detachment: if Γ ⊢ A and Γ ⊢ A ⊃ B,

then Γ ⊢ B.

Deduction Theorem: If Γ ∪ {A} ⊢ C, then Γ ⊢ A ⊃ C.

Cut: If Γ ⊢ A and Γ′ ∪ {A} ⊢ B then Γ ∪ Γ′ ⊢ B.

Universal generalization: If Γ ⊢ A and Γ is free from x, then
Γ ⊢ ∀xA.
Universal generalization 2.: If t ∈ T (∅) s.t. it occurs neither
in A nor in the members of Γ and Γ ⊢ At/x then Γ ⊢ ∀xA.

A de�nition: If A ∈ Form and the variables having free

occurrences in A are x1, x2, . . . xn, then the universal closure of

A is the formula ∀x1∀x2 . . . ∀xnA.

András Máté metalogic 28th April



QC 2: deducibility and some metatheorems

Base for the inductive de�nition of Γ ⊢ A: if A ∈ Γ ∪BF , then

Γ ⊢ A. Inductive rule is detachment: if Γ ⊢ A and Γ ⊢ A ⊃ B,

then Γ ⊢ B.

Deduction Theorem: If Γ ∪ {A} ⊢ C, then Γ ⊢ A ⊃ C.

Cut: If Γ ⊢ A and Γ′ ∪ {A} ⊢ B then Γ ∪ Γ′ ⊢ B.

Universal generalization: If Γ ⊢ A and Γ is free from x, then
Γ ⊢ ∀xA.
Universal generalization 2.: If t ∈ T (∅) s.t. it occurs neither
in A nor in the members of Γ and Γ ⊢ At/x then Γ ⊢ ∀xA.

A de�nition: If A ∈ Form and the variables having free

occurrences in A are x1, x2, . . . xn, then the universal closure of

A is the formula ∀x1∀x2 . . . ∀xnA.

András Máté metalogic 28th April



Consequences, consistency, �rst-order theories

Given any logical calculus Σ in a language L and a class Γ of

formulas of L, the class of the consequences of Γ is the class

Cns(Γ) = {A ∈ Form : Γ ⊢Σ A}

Γ is inconsistent if Cns(Γ) = Form, consistent in the other

case.

In �rst-order logic, Γ is consistent i� there is no A ∈ Form s. t.

both Γ ⊢ A and Γ ⊢ ¬A.
The pair T =< L1,Γ > is a �rst-order theory if L1 is a

�rst-order language and Γ is a class of its closed formulas (called

axioms of T ).

The theorems of T are the members of Cns(Γ). T is said

consistent resp. inconsistent if Γ is consistent resp. inconsistent.
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The theory CC∗ and its language L1∗

CC∗ is the rewriting of the (hyper)calculus H3 in the form of a

�rst-order theory.

H3 derives strings like Ka, Wb, aDb, aGb, Aa with the

intended meanings `a is a calculus', . . . `a is an autonomous

number'. We want CC∗ to prove formulas like K(a), . . . A(a)
just in the same case.

The language of CC∗ is the �rst-order language L1∗.
Non-logical components :

N∅ = {ϑ, α, β, ξ, ≫, ∗}
ϑ denotes the empty string, the other name constants

denote (autonymously) the letters of Acc.

Noo = {∅}
The empty string denotes concatenation (and we omit the

parentheses around its arguments), i.e., we write the

concatenation of the strings x and y as xy.

András Máté metalogic 28th April



The theory CC∗ and its language L1∗

CC∗ is the rewriting of the (hyper)calculus H3 in the form of a

�rst-order theory.

H3 derives strings like Ka, Wb, aDb, aGb, Aa with the

intended meanings `a is a calculus', . . . `a is an autonomous

number'. We want CC∗ to prove formulas like K(a), . . . A(a)
just in the same case.

The language of CC∗ is the �rst-order language L1∗.
Non-logical components :

N∅ = {ϑ, α, β, ξ, ≫, ∗}
ϑ denotes the empty string, the other name constants

denote (autonymously) the letters of Acc.

Noo = {∅}
The empty string denotes concatenation (and we omit the

parentheses around its arguments), i.e., we write the

concatenation of the strings x and y as xy.

András Máté metalogic 28th April



The theory CC∗ and its language L1∗

CC∗ is the rewriting of the (hyper)calculus H3 in the form of a

�rst-order theory.

H3 derives strings like Ka, Wb, aDb, aGb, Aa with the

intended meanings `a is a calculus', . . . `a is an autonomous

number'. We want CC∗ to prove formulas like K(a), . . . A(a)
just in the same case.

The language of CC∗ is the �rst-order language L1∗.
Non-logical components :

N∅ = {ϑ, α, β, ξ, ≫, ∗}
ϑ denotes the empty string, the other name constants

denote (autonymously) the letters of Acc.

Noo = {∅}
The empty string denotes concatenation (and we omit the

parentheses around its arguments), i.e., we write the

concatenation of the strings x and y as xy.

András Máté metalogic 28th April



The theory CC∗ and its language L1∗

CC∗ is the rewriting of the (hyper)calculus H3 in the form of a

�rst-order theory.

H3 derives strings like Ka, Wb, aDb, aGb, Aa with the

intended meanings `a is a calculus', . . . `a is an autonomous

number'. We want CC∗ to prove formulas like K(a), . . . A(a)
just in the same case.

The language of CC∗ is the �rst-order language L1∗.
Non-logical components :

N∅ = {ϑ, α, β, ξ, ≫, ∗}
ϑ denotes the empty string, the other name constants

denote (autonymously) the letters of Acc.

Noo = {∅}
The empty string denotes concatenation (and we omit the

parentheses around its arguments), i.e., we write the

concatenation of the strings x and y as xy.

András Máté metalogic 28th April



The theory CC∗ and its language L1∗

CC∗ is the rewriting of the (hyper)calculus H3 in the form of a

�rst-order theory.

H3 derives strings like Ka, Wb, aDb, aGb, Aa with the

intended meanings `a is a calculus', . . . `a is an autonomous

number'. We want CC∗ to prove formulas like K(a), . . . A(a)
just in the same case.

The language of CC∗ is the �rst-order language L1∗.
Non-logical components :

N∅ = {ϑ, α, β, ξ, ≫, ∗}
ϑ denotes the empty string, the other name constants

denote (autonymously) the letters of Acc.

Noo = {∅}
The empty string denotes concatenation (and we omit the

parentheses around its arguments), i.e., we write the

concatenation of the strings x and y as xy.

András Máté metalogic 28th April



The language L1∗ (continuation)

The auxiliary letters of the hypercalculi H1 � H3 become

predicates and we keepthe intended meanings:

Po = {I, L, V, W, T, R, K, A}
Poo = {D, F, G}
Poooo = {S}
S(v)(u)(y)(x): if we substitute the word y for the variable

x, we get the string v from the string u.)

Logical constants, variables (let us write them as x, x1, . . .), the
syntax of terms and formulas are like in any other �rst-order

language. The intended universe (the domain of the variables) is

the class of Acc-strings.
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