First-order languages, first-order calculus (QC) The language $\mathcal{L}^{1 *}$

András Máté

28.01.2023

Logical calculi

Logical calculi

Logical calculus:

Logical calculi

Logical calculus:

- An L family of languages with a distinguished category Form $_{L}$;

Logical calculi

Logical calculus:

- An L family of languages with a distinguished category Form $_{L}$;
- Inductive definition of the syntactic consequence (deducibility) relation $\Gamma \vdash_{L} A$, where $\Gamma \subseteq$ Form $_{L}$ (premises) and $A \in$ Form $_{L}$ (conclusion).

Logical calculi

Logical calculus:

- An L family of languages with a distinguished category Form $_{L}$;
- Inductive definition of the syntactic consequence (deducibility) relation $\Gamma \vdash_{L} A$, where $\Gamma \subseteq$ Form $_{L}$ (premises) and $A \in$ Form $_{L}$ (conclusion).
Base of the inductive definition: a class of formulas deducible from the empty class of premises (basic formulas or logical axioms).

Logical calculi

Logical calculus:

- An L family of languages with a distinguished category Form $_{L}$;
- Inductive definition of the syntactic consequence (deducibility) relation $\Gamma \vdash_{L} A$, where $\Gamma \subseteq \operatorname{Form}_{L}$ (premises) and $A \in$ Form $_{L}$ (conclusion).
Base of the inductive definition: a class of formulas deducible from the empty class of premises (basic formulas or logical axioms).
Inductive rules (rules of deduction, proof rules) prescribe how you can arrive from some given relations $\Gamma \vdash A_{1}, \Gamma \vdash A_{2}, \ldots$ to some new relation $\Gamma \vdash A$.

Logical calculi (continuation)

Logical calculi (continuation)

Different ways to define the deducibility relation: many axioms and only one or two rules of deduction (Frege-Hilbert style of calculus) versus no axioms at all, only rules (Gentzen-style or natural deduction systems).

Logical calculi (continuation)

Different ways to define the deducibility relation: many axioms and only one or two rules of deduction (Frege-Hilbert style of calculus) versus no axioms at all, only rules (Gentzen-style or natural deduction systems).
Equivalence of different calculi (for the same family of languages): on the natural way (the extension of the relation \vdash is the same).

Logical calculi (continuation)

Different ways to define the deducibility relation: many axioms and only one or two rules of deduction (Frege-Hilbert style of calculus) versus no axioms at all, only rules (Gentzen-style or natural deduction systems).
Equivalence of different calculi (for the same family of languages): on the natural way (the extension of the relation \vdash is the same).
A natural demand for the class of logical axioms and the rules of deduction: they should be decidable.

First-order languages

First-order languages

All the symbols are strings of some given alphabet \mathcal{A}.

First-order languages

All the symbols are strings of some given alphabet \mathcal{A}.
The class of arities $A=\{\varnothing, o, o o, \ldots\}$ was defined inductively earlier.

All the symbols are strings of some given alphabet \mathcal{A}.
The class of arities $A=\{\varnothing, o, o o, \ldots\}$ was defined inductively earlier.
A first-order language \mathcal{L}^{1} is a quintuple

$$
<\text { Log,Var,Con,Term,Form }>
$$

where $\log =\{(),, \neg, \supset, \forall,=\}$ is the class of logical constants, Var is the infinite class of variables defined inductively, and Con $=N \cup P=\bigcup_{a \in A} P_{a} \cup \bigcup_{a \in A} N_{a}$ is the class of non-logical constants containing all the classes P_{a} of a-ary predicates and N_{a} of a-ary name functors.

All the symbols are strings of some given alphabet \mathcal{A}.
The class of arities $A=\{\varnothing, o, o o, \ldots\}$ was defined inductively earlier.
A first-order language \mathcal{L}^{1} is a quintuple

$$
<\text { Log,Var,Con,Term,Form }>
$$

where $\log =\{(),, \neg, \supset, \forall,=\}$ is the class of logical constants, Var is the infinite class of variables defined inductively, and $C o n=N \cup P=\bigcup_{a \in A} P_{a} \cup \bigcup_{a \in A} N_{a}$ is the class of non-logical constants containing all the classes P_{a} of a-ary predicates and N_{a} of a-ary name functors.
It is assumed that for $a_{i} \neq a_{j} \in A, N_{a_{i}} \cap N_{a_{j}}=P_{a_{i}} \cap P_{a_{j}}=\emptyset$ and $N \cap P=\emptyset$.

Terms and a-tuples of terms

Terms and a-tuples of terms

The class of a-tuples of terms $a \in A$ is $T(a)$.

Terms and a-tuples of terms

The class of a-tuples of terms $a \in A$ is $T(a)$.
The simultaneous inductive definition of the classes Term and $T(a)$:

Terms and a-tuples of terms

The class of a-tuples of terms $a \in A$ is $T(a)$.
The simultaneous inductive definition of the classes Term and $T(a)$:

1. Var \subseteq Term
2. $T(\varnothing)=\{\varnothing\}$
3. $(s \in T(a) \& t \in T e r m) \Rightarrow\ulcorner s(t)\urcorner \in T(a o)$
4. $\left(\varphi \in N_{a} \& s \in T(a)\right) \Rightarrow\ulcorner\varphi s\urcorner \in$ Term

Formulas

1. $\pi \in P_{a} \& s \in T(a) \Rightarrow\ulcorner\pi s\urcorner \in$ Form
2. $s, t \in T e r m \Rightarrow\ulcorner s=t\urcorner \in$ Form
3. $A \in$ Form $\Rightarrow\ulcorner\neg A\urcorner \in$ Form
4. $A, B \in$ Form $\Rightarrow\ulcorner A \supset B\urcorner \in$ Form
5. $A \in$ Form $\& x \in \operatorname{Var} \Rightarrow\ulcorner\forall x A\urcorner \in$ Form
6. $\pi \in P_{a} \& s \in T(a) \Rightarrow\ulcorner\pi s\urcorner \in$ Form
7. $s, t \in$ Term $\Rightarrow\ulcorner s=t\urcorner \in$ Form
8. $A \in$ Form $\Rightarrow\ulcorner\neg A\urcorner \in$ Form
9. $\quad A, B \in$ Form $\Rightarrow\ulcorner A \supset B\urcorner \in$ Form
10. $A \in$ Form $\& x \in$ Var $\Rightarrow\ulcorner\forall x A\urcorner \in$ Form

Atomic formulas are the formulas generated by the rules 1 . and 2.

1. $\pi \in P_{a} \& s \in T(a) \Rightarrow\ulcorner\pi s\urcorner \in$ Form
2. $s, t \in$ Term $\Rightarrow\ulcorner s=t\urcorner \in$ Form
3. $A \in$ Form $\Rightarrow\ulcorner\neg A\urcorner \in$ Form
4. $\quad A, B \in$ Form $\Rightarrow\ulcorner A \supset B\urcorner \in$ Form
5. $A \in$ Form $\& x \in \operatorname{Var} \Rightarrow\ulcorner\forall x A\urcorner \in$ Form

Atomic formulas are the formulas generated by the rules 1 . and 2.

Other logical constants $(\vee, \wedge, \equiv, \exists)$ are introduced by abbreviation conventions.

1. $\pi \in P_{a} \& s \in T(a) \Rightarrow\ulcorner\pi s\urcorner \in$ Form
2. $s, t \in$ Term $\Rightarrow\ulcorner s=t\urcorner \in$ Form
3. $A \in$ Form $\Rightarrow\ulcorner\neg A\urcorner \in$ Form
4. $A, B \in$ Form $\Rightarrow\ulcorner A \supset B\urcorner \in$ Form
5. $A \in$ Form $\& x \in \operatorname{Var} \Rightarrow\ulcorner\forall x A\urcorner \in$ Form

Atomic formulas are the formulas generated by the rules 1. and 2.

Other logical constants $(\vee, \wedge, \equiv, \exists)$ are introduced by abbreviation conventions.
Be $A, B \in$ Form. B is a subformula of A iff A is of the form $u B v\left(u, v \in \mathcal{A}^{\circ}\right)$.

$$
\begin{array}{ll}
1 . & \pi \in P_{a} \& s \in T(a) \Rightarrow\ulcorner\pi s\urcorner \in \text { Form } \\
\text { 2. } & s, t \in \text { Term } \Rightarrow\ulcorner s=t\urcorner \in \text { Form } \\
\text { 3. } & A \in \text { Form } \Rightarrow\ulcorner\neg A\urcorner \in \text { Form } \\
\text { 4. } & A, B \in \text { Form } \Rightarrow\ulcorner A \supset B\urcorner \in \text { Form } \\
\text { 5. } & A \in \text { Form } \& x \in \text { Var } \Rightarrow\ulcorner\forall x A\urcorner \in \text { Form }
\end{array}
$$

Atomic formulas are the formulas generated by the rules 1. and 2.

Other logical constants $(\vee, \wedge, \equiv, \exists)$ are introduced by abbreviation conventions.
Be $A, B \in$ Form. B is a subformula of A iff A is of the form $u B v\left(u, v \in \mathcal{A}^{\circ}\right)$.
If $x \in \operatorname{Var}$ and $A \in$ Form, an occurrence of x in A is a bound occurrence of x in A iff it lies in a subformula of A of the form $\forall x B$. Other occurrences are called free occurrences.

Some further auxiliary notions

Some further auxiliary notions

A term is open iff at least one variable is a substring of it; otherways it is closed.

Some further auxiliary notions

A term is open iff at least one variable is a substring of it; otherways it is closed.
A formula is open if it contains at least one free occurrence of a variable; otherwise it is closed. Closed formulas are called sentences.

Some further auxiliary notions

A term is open iff at least one variable is a substring of it; otherways it is closed.
A formula is open if it contains at least one free occurrence of a variable; otherwise it is closed. Closed formulas are called sentences.
A formula A is free from the variable x iff x has no free occurrences in $A . \Gamma \subseteq F$ orm is free from x if each member of it is.

A term is open iff at least one variable is a substring of it; otherways it is closed.
A formula is open if it contains at least one free occurrence of a variable; otherwise it is closed. Closed formulas are called sentences.
A formula A is free from the variable x iff x has no free occurrences in $A . \Gamma \subseteq F$ orm is free from x if each member of it is.

Be $A \in$ Form, $x, y \in V a r . y$ is substitutable for x in A iff for every subformula of A of the form $\forall y B, B$ is free from x.
$t \in T e r m$ is substitutable for x in A iff every variable occurring in t is substitutable. If t is substitutable for x in A, then $A^{t / x}$ denotes (in the metalanguage) the formula obtained from A substituting t for every free occurrence of x in A.

The quantification calculus (QC) 1: the axioms

The quantification calculus (QC) 1: the axioms

Given a first-order language \mathcal{L}^{1}, the logical axioms (basic formulas) are defined by the help of the following schemes:

The quantification calculus (QC) 1: the axioms

Given a first-order language \mathcal{L}^{1}, the logical axioms (basic formulas) are defined by the help of the following schemes:
(B1) $(A \supset(B \supset A))$
(B2) $((A \supset(B \supset C) \supset((A \supset B) \supset(A \supset C)))$
(B3) $((\neg B \supset \neg A) \supset(A \supset B))$

The quantification calculus (QC) 1: the axioms

Given a first-order language \mathcal{L}^{1}, the logical axioms (basic formulas) are defined by the help of the following schemes:
(B1) $(A \supset(B \supset A))$
(B2) $((A \supset(B \supset C) \supset((A \supset B) \supset(A \supset C)))$
(B3) $((\neg B \supset \neg A) \supset(A \supset B))$
(B4) $\left(\forall x A \supset A^{t / x}\right)$
(B5) $(\forall x(A \supset B) \supset(\forall x A \supset \forall x B))$
(B6) $(A \supset \forall x A) \quad$ provided that A is free from x

The quantification calculus (QC) 1: the axioms

Given a first-order language \mathcal{L}^{1}, the logical axioms (basic formulas) are defined by the help of the following schemes:
(B1) $(A \supset(B \supset A))$
(B2) $((A \supset(B \supset C) \supset((A \supset B) \supset(A \supset C)))$
(B3) $((\neg B \supset \neg A) \supset(A \supset B))$
(B4) $\left(\forall x A \supset A^{t / x}\right)$
(B5) $(\forall x(A \supset B) \supset(\forall x A \supset \forall x B))$
(B6) $(A \supset \forall x A) \quad$ provided that A is free from x
(B7) $(\mathfrak{x}=\mathfrak{x})$
(B8) $\left((x=y) \supset\left(A^{x / z} \supset A^{y / z}\right)\right)$

The quantification calculus (QC) 1: the axioms

Given a first-order language \mathcal{L}^{1}, the logical axioms (basic formulas) are defined by the help of the following schemes:
(B1) $(A \supset(B \supset A))$
(B2) $((A \supset(B \supset C) \supset((A \supset B) \supset(A \supset C)))$
(B3) $((\neg B \supset \neg A) \supset(A \supset B))$
(B4) $\left(\forall x A \supset A^{t / x}\right)$
(B5) $(\forall x(A \supset B) \supset(\forall x A \supset \forall x B))$
(B6) $(A \supset \forall x A) \quad$ provided that A is free from x
(B7) $(\mathfrak{x}=\mathfrak{x})$
(B8) $\left((x=y) \supset\left(A^{x / z} \supset A^{y / z}\right)\right)$
The class $B F$ of logical axioms is defined inductively:

The quantification calculus (QC) 1: the axioms

Given a first-order language \mathcal{L}^{1}, the logical axioms (basic formulas) are defined by the help of the following schemes:
(B1) $(A \supset(B \supset A))$
(B2) $((A \supset(B \supset C) \supset((A \supset B) \supset(A \supset C)))$
(B3) $((\neg B \supset \neg A) \supset(A \supset B))$
(B4) $\left(\forall x A \supset A^{t / x}\right)$
(B5) $(\forall x(A \supset B) \supset(\forall x A \supset \forall x B))$
(B6) $(A \supset \forall x A) \quad$ provided that A is free from x
(B7) $(\mathfrak{x}=\mathfrak{x})$
(B8) $\left((x=y) \supset\left(A^{x / z} \supset A^{y / z}\right)\right)$
The class $B F$ of logical axioms is defined inductively:
i If we substitute for A, B, C formulas, for x, y, z variables and for t terms of \mathcal{L}^{1} in the above schemes, we get members of $B F$.

The quantification calculus (QC) 1: the axioms

Given a first-order language \mathcal{L}^{1}, the logical axioms (basic formulas) are defined by the help of the following schemes:
(B1) $(A \supset(B \supset A))$
(B2) $((A \supset(B \supset C) \supset((A \supset B) \supset(A \supset C)))$
(B3) $((\neg B \supset \neg A) \supset(A \supset B))$
(B4) $\left(\forall x A \supset A^{t / x}\right)$
(B5) $(\forall x(A \supset B) \supset(\forall x A \supset \forall x B))$
(B6) $(A \supset \forall x A) \quad$ provided that A is free from x
(B7) $(\mathfrak{x}=\mathfrak{x})$
(B8) $\left((x=y) \supset\left(A^{x / z} \supset A^{y / z}\right)\right)$
The class $B F$ of logical axioms is defined inductively:
i If we substitute for A, B, C formulas, for x, y, z variables and for t terms of \mathcal{L}^{1} in the above schemes, we get members of $B F$.
ii If $A \in B F$ and $x \in \operatorname{Var}$, then $\ulcorner\forall x A\urcorner \in B F$.

QC 2: deducibility and some metatheorems

QC 2: deducibility and some metatheorems

Base for the inductive definition of $\Gamma \vdash A$: if $A \in \Gamma \cup B F$, then $\Gamma \vdash A$. Inductive rule is detachment: if $\Gamma \vdash A$ and $\Gamma \vdash A \supset B$, then $\Gamma \vdash B$.

QC 2: deducibility and some metatheorems

Base for the inductive definition of $\Gamma \vdash A$: if $A \in \Gamma \cup B F$, then $\Gamma \vdash A$. Inductive rule is detachment: if $\Gamma \vdash A$ and $\Gamma \vdash A \supset B$, then $\Gamma \vdash B$.

- Deduction Theorem: If $\Gamma \cup\{A\} \vdash C$, then $\Gamma \vdash A \supset C$.

QC 2: deducibility and some metatheorems

Base for the inductive definition of $\Gamma \vdash A$: if $A \in \Gamma \cup B F$, then $\Gamma \vdash A$. Inductive rule is detachment: if $\Gamma \vdash A$ and $\Gamma \vdash A \supset B$, then $\Gamma \vdash B$.

- Deduction Theorem: If $\Gamma \cup\{A\} \vdash C$, then $\Gamma \vdash A \supset C$.
- Cut: If $\Gamma \vdash A$ and $\Gamma^{\prime} \cup\{A\} \vdash B$ then $\Gamma \cup \Gamma^{\prime} \vdash B$.

QC 2: deducibility and some metatheorems

Base for the inductive definition of $\Gamma \vdash A$: if $A \in \Gamma \cup B F$, then $\Gamma \vdash A$. Inductive rule is detachment: if $\Gamma \vdash A$ and $\Gamma \vdash A \supset B$, then $\Gamma \vdash B$.

- Deduction Theorem: If $\Gamma \cup\{A\} \vdash C$, then $\Gamma \vdash A \supset C$.
- Cut: If $\Gamma \vdash A$ and $\Gamma^{\prime} \cup\{A\} \vdash B$ then $\Gamma \cup \Gamma^{\prime} \vdash B$.
- Universal generalization: If $\Gamma \vdash A$ and Γ is free from x, then $\Gamma \vdash \forall x A$.

QC 2: deducibility and some metatheorems

Base for the inductive definition of $\Gamma \vdash A$: if $A \in \Gamma \cup B F$, then $\Gamma \vdash A$. Inductive rule is detachment: if $\Gamma \vdash A$ and $\Gamma \vdash A \supset B$, then $\Gamma \vdash B$.

- Deduction Theorem: If $\Gamma \cup\{A\} \vdash C$, then $\Gamma \vdash A \supset C$.
- Cut: If $\Gamma \vdash A$ and $\Gamma^{\prime} \cup\{A\} \vdash B$ then $\Gamma \cup \Gamma^{\prime} \vdash B$.
- Universal generalization: If $\Gamma \vdash A$ and Γ is free from x, then $\Gamma \vdash \forall x A$.
- Universal generalization 2.: If $t \in T(\varnothing)$ s.t. it occurs neither in A nor in the members of Γ and $\Gamma \vdash A^{t / x}$ then $\Gamma \vdash \forall x A$.

QC 2: deducibility and some metatheorems

Base for the inductive definition of $\Gamma \vdash A$: if $A \in \Gamma \cup B F$, then $\Gamma \vdash A$. Inductive rule is detachment: if $\Gamma \vdash A$ and $\Gamma \vdash A \supset B$, then $\Gamma \vdash B$.

- Deduction Theorem: If $\Gamma \cup\{A\} \vdash C$, then $\Gamma \vdash A \supset C$.
- Cut: If $\Gamma \vdash A$ and $\Gamma^{\prime} \cup\{A\} \vdash B$ then $\Gamma \cup \Gamma^{\prime} \vdash B$.
- Universal generalization: If $\Gamma \vdash A$ and Γ is free from x, then $\Gamma \vdash \forall x A$.
- Universal generalization 2.: If $t \in T(\varnothing)$ s.t. it occurs neither in A nor in the members of Γ and $\Gamma \vdash A^{t / x}$ then $\Gamma \vdash \forall x A$.
A definition: If $A \in F o r m$ and the variables having free occurrences in A are $x_{1}, x_{2}, \ldots x_{n}$, then the universal closure of A is the formula $\forall x_{1} \forall x_{2} \ldots \forall x_{n} A$.

Consequences, consistency, first-order theories

Consequences, consistency, first-order theories

Given any logical calculus Σ in a language \mathcal{L} and a class Γ of formulas of \mathcal{L}, the class of the consequences of Γ is the class

$$
\operatorname{Cns}(\Gamma)=\left\{A \in \text { Form }: \Gamma \vdash_{\Sigma} A\right\}
$$

Consequences, consistency, first-order theories

Given any logical calculus Σ in a language \mathcal{L} and a class Γ of formulas of \mathcal{L}, the class of the consequences of Γ is the class

$$
\operatorname{Cns}(\Gamma)=\left\{A \in \text { Form }: \Gamma \vdash_{\Sigma} A\right\}
$$

Γ is inconsistent if $\mathrm{Cns}(\Gamma)=$ Form, consistent in the other case.

Consequences, consistency, first-order theories

Given any logical calculus Σ in a language \mathcal{L} and a class Γ of formulas of \mathcal{L}, the class of the consequences of Γ is the class

$$
\operatorname{Cns}(\Gamma)=\left\{A \in \text { Form }: \Gamma \vdash_{\Sigma} A\right\}
$$

Γ is inconsistent if $\mathrm{Cns}(\Gamma)=$ Form, consistent in the other case.

In first-order logic, Γ is consistent iff there is no $A \in$ Form s. t. both $\Gamma \vdash A$ and $\Gamma \vdash \neg A$.

Consequences, consistency, first-order theories

Given any logical calculus Σ in a language \mathcal{L} and a class Γ of formulas of \mathcal{L}, the class of the consequences of Γ is the class

$$
\operatorname{Cns}(\Gamma)=\left\{A \in \text { Form }: \Gamma \vdash_{\Sigma} A\right\}
$$

Γ is inconsistent if $\operatorname{Cns}(\Gamma)=$ Form, consistent in the other case.

In first-order logic, Γ is consistent iff there is no $A \in F o r m$ s. t. both $\Gamma \vdash A$ and $\Gamma \vdash \neg A$.
The pair $T=<\mathcal{L}^{1}, \Gamma>$ is a first-order theory if \mathcal{L}^{1} is a first-order language and Γ is a class of its closed formulas (called axioms of T).

Consequences, consistency, first-order theories

Given any logical calculus Σ in a language \mathcal{L} and a class Γ of formulas of \mathcal{L}, the class of the consequences of Γ is the class

$$
\operatorname{Cns}(\Gamma)=\left\{A \in \text { Form }: \Gamma \vdash_{\Sigma} A\right\}
$$

Γ is inconsistent if $\operatorname{Cns}(\Gamma)=$ Form, consistent in the other case.

In first-order logic, Γ is consistent iff there is no $A \in$ Form s. t. both $\Gamma \vdash A$ and $\Gamma \vdash \neg A$.
The pair $T=<\mathcal{L}^{1}, \Gamma>$ is a first-order theory if \mathcal{L}^{1} is a first-order language and Γ is a class of its closed formulas (called axioms of T).
The theorems of T are the members of $C n s(\Gamma) . T$ is said consistent resp. inconsistent if Γ is consistent resp. inconsistent.

The theory CC^{*} and its language $\mathcal{L}^{1 *}$

The theory $\mathbf{C C}^{*}$ and its language $\mathcal{L}^{1 *}$

$\mathbf{C C}{ }^{*}$ is the rewriting of the (hyper)calculus \mathbf{H}_{3} in the form of a first-order theory.
\mathbf{H}_{3} derives strings like $K a, W b, a D b, a G b, A a$ with the intended meanings ' a is a calculus', \ldots ' a is an autonomous number'. We want $\mathbf{C C}$ * to prove formulas like $K(a), \ldots A(a)$ just in the same case.

The theory $\mathbf{C C}^{*}$ and its language $\mathcal{L}^{1 *}$

$\mathbf{C C}{ }^{*}$ is the rewriting of the (hyper)calculus \mathbf{H}_{3} in the form of a first-order theory.
\mathbf{H}_{3} derives strings like $K a, W b, a D b, a G b, A a$ with the intended meanings ' a is a calculus', \ldots ' a is an autonomous number'. We want $\mathbf{C C}$ * to prove formulas like $K(a), \ldots A(a)$ just in the same case.
The language of $\mathbf{C C}$ * is the first-order language $\mathcal{L}^{1 *}$.
Non-logical components :

The theory $\mathbf{C C}^{*}$ and its language $\mathcal{L}^{1 *}$

$\mathbf{C C}{ }^{*}$ is the rewriting of the (hyper)calculus \mathbf{H}_{3} in the form of a first-order theory.
\mathbf{H}_{3} derives strings like $K a, W b, a D b, a G b, A a$ with the intended meanings ' a is a calculus', \ldots ' a is an autonomous number'. We want $\mathbf{C C}{ }^{*}$ to prove formulas like $K(a), \ldots A(a)$ just in the same case.
The language of $\mathbf{C C}$ * is the first-order language $\mathcal{L}^{1 *}$.
Non-logical components :

- $N_{\varnothing}=\{\vartheta, \alpha, \beta, \xi, \gg, *\}$
ϑ denotes the empty string, the other name constants denote (autonymously) the letters of $\mathcal{A}_{c c}$.

The theory CC^{*} and its language $\mathcal{L}^{1 *}$

$\mathbf{C C}$ * is the rewriting of the (hyper)calculus \mathbf{H}_{3} in the form of a first-order theory.
\mathbf{H}_{3} derives strings like $K a, W b, a D b, a G b, A a$ with the intended meanings ' a is a calculus', \ldots ' a is an autonomous number'. We want $\mathbf{C C}{ }^{*}$ to prove formulas like $K(a), \ldots A(a)$ just in the same case.
The language of $\mathbf{C C}$ * is the first-order language $\mathcal{L}^{1 *}$.
Non-logical components :

- $N_{\varnothing}=\{\vartheta, \alpha, \beta, \xi, \gg *\}$
ϑ denotes the empty string, the other name constants denote (autonymously) the letters of $\mathcal{A}_{c c}$.
- $N_{o o}=\{\varnothing\}$

The empty string denotes concatenation (and we omit the parentheses around its arguments), i.e., we write the concatenation of the strings x and y as $x y$.

The language $\mathcal{L}^{1 *}$ (continuation)

The auxiliary letters of the hypercalculi $\mathbf{H}_{1}-\mathbf{H}_{3}$ become predicates and we keepthe intended meanings:

The language $\mathcal{L}^{1 *}$ (continuation)

The auxiliary letters of the hypercalculi $\mathbf{H}_{1}-\mathbf{H}_{3}$ become predicates and we keepthe intended meanings:

- $P_{o}=\{I, L, V, W, T, R, K, A\}$

The language $\mathcal{L}^{1 *}$ (continuation)

The auxiliary letters of the hypercalculi $\mathbf{H}_{1}-\mathbf{H}_{3}$ become predicates and we keepthe intended meanings:

- $P_{o}=\{I, L, V, W, T, R, K, A\}$
- $P_{o o}=\{D, F, G\}$

The language $\mathcal{L}^{1 *}$ (continuation)

The auxiliary letters of the hypercalculi $\mathbf{H}_{1}-\mathbf{H}_{3}$ become predicates and we keepthe intended meanings:

- $P_{o}=\{I, L, V, W, T, R, K, A\}$
- $P_{o o}=\{D, F, G\}$
- $P_{\text {oоoо }}=\{S\}$
$S(v)(u)(y)(x)$: if we substitute the word y for the variable x, we get the string v from the string u.)

The language $\mathcal{L}^{1 *}$ (continuation)

The auxiliary letters of the hypercalculi $\mathbf{H}_{1}-\mathbf{H}_{3}$ become predicates and we keepthe intended meanings:

- $P_{o}=\{I, L, V, W, T, R, K, A\}$
- $P_{o o}=\{D, F, G\}$
- $P_{\text {oooo }}=\{S\}$
$S(v)(u)(y)(x)$: if we substitute the word y for the variable x, we get the string v from the string u.)
Logical constants, variables (let us write them as $\mathfrak{x}, \mathfrak{x}_{1}, \ldots$), the syntax of terms and formulas are like in any other first-order language. The intended universe (the domain of the variables) is the class of $\mathcal{A}_{c c}$-strings.

