Some canonical calculi and logical languages

The concept of hypercalculus

Andras Maté

24.03.2023

Andras Maté metalogic 24. March

The language of propositional logic

Andras Maté metalogic 24. March

The language of propositional logic

We have an infinite sequence of propositional constants

Do, P1s ---5 Pn, --.and two logical connectives: =, D. How to
define the class of wif’s as an inductively defined class over a
finite alphabet, possibly avoiding the use of natural numbers?

Andras Maté metalogic 24. March

The language of propositional logic

We have an infinite sequence of propositional constants

Do, P1s ---5 Pn, --.and two logical connectives: =, D. How to
define the class of wif’s as an inductively defined class over a
finite alphabet, possibly avoiding the use of natural numbers?

Instead of p, we write m¢...t. We don’t need numbers for
indexes, but we need that our propositional constants can be
distinguished from each other.

Andras Maté metalogic 24. March

The language of propositional logic

We have an infinite sequence of propositional constants

Do, P1s ---5 Pn, --.and two logical connectives: =, D. How to
define the class of wif’s as an inductively defined class over a
finite alphabet, possibly avoiding the use of natural numbers?

Instead of p, we write m¢...t. We don’t need numbers for
indexes, but we need that our propositional constants can be
distinguished from each other.

Alphabet: Apr, ={(,), 7, ¢, =, D}. Auxiliary letters: I for
inder and F for formula. The calculus K,y guage(pr):

Andras Maté metalogic 24. March

The language of propositional logic

We have an infinite sequence of propositional constants

Do, P1s ---5 Pn, --.and two logical connectives: =, D. How to
define the class of wif’s as an inductively defined class over a
finite alphabet, possibly avoiding the use of natural numbers?

Instead of p, we write m¢...t. We don’t need numbers for
indexes, but we need that our propositional constants can be
distinguished from each other.

Alphabet: Apr, ={(,), 7, ¢, =, D}. Auxiliary letters: I for
inder and F for formula. The calculus K,y guage(pr):

147
Ix — IxL

1

2

3. Irx— Frzx
4. Fzr — F—x
5

Fx — Fy— F(z Dy)
5. Fx —«x

Andras Maté metalogic 24. March

Comments to the above calculus

Andras Maté metalogic 24. March

Comments to the above calculus

o The numbers in the left column are for the sake of reference
only; they don’t belong to the calculus.

Andras Maté metalogic 24. March

Comments to the above calculus

o The numbers in the left column are for the sake of reference
only; they don’t belong to the calculus.

o The sign of the empty word can be omitted from the 1. rule.

Andras Maté metalogic 24. March

Comments to the above calculus

o The numbers in the left column are for the sake of reference
only; they don’t belong to the calculus.

o The sign of the empty word can be omitted from the 1. rule.

e 5*. is a release rule: it erases an auxiliary letter. We can
define the wit’s of PL as the Apr° — strings derivable in
this calculus.

Andras Maté metalogic 24. March

Comments to the above calculus

o The numbers in the left column are for the sake of reference
only; they don’t belong to the calculus.

o The sign of the empty word can be omitted from the 1. rule.

e 5*. is a release rule: it erases an auxiliary letter. We can
define the wit’s of PL as the Apr° — strings derivable in
this calculus.

o The language of propositional logic could have been defined
without using auxiliary letters (see textbook p. 40). But it
is not always possible to eliminate the auxiliary letters and
they make our work simpler and more transparent even if
they (or some of them) are not necessary.

Andras Maté metalogic 24. March

Propositional logic as calculus (informally)

Andras Maté metalogic 24. March

Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.

Andras Maté metalogic 24. March

Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.
We include the (first five rules of) the previous calculus.

Andras Maté metalogic 24. March

Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.

We include the (first five rules of) the previous calculus.

New auxiliary letter: L with the intended meaning ,provable
formula”.

Andras Maté metalogic 24. March

Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.

We include the (first five rules of) the previous calculus.

New auxiliary letter: L with the intended meaning ,provable
formula”.

The rules after the definition of the formulas will be just the
usual axiom schemes of propositional logic.

Andras Maté metalogic 24. March

Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.

We include the (first five rules of) the previous calculus.

New auxiliary letter: L with the intended meaning ,provable
formula”.

The rules after the definition of the formulas will be just the
usual axiom schemes of propositional logic.

The rule of detachment (for ‘D’) will appear again as a rule of
our calculus.

Andras Maté metalogic 24. March

Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.

We include the (first five rules of) the previous calculus.

New auxiliary letter: L with the intended meaning ,provable
formula”.

The rules after the definition of the formulas will be just the
usual axiom schemes of propositional logic.

The rule of detachment (for ‘D’) will appear again as a rule of
our calculus.

We need now a release rule for L.

Andras Maté metalogic 24. March

The calculus of propositional logic Kpy,

Andras Maté metalogic 24. March

The calculus of propositional logic Kpy,

The calculus begins with the first five rules of K Language(PL) and
continues as follows:

Andras Maté metalogic 24. March

The calculus of propositional logic Kpy,

The calculus begins with the first five rules of K Language(PL) and
continues as follows:

6.
7.
8.
9.
9*.

Fu— Fv— L(u> (vDu))

Fu— Fv— Fw— L((uD (v Dw)) D ((uDdwv) D (udw)))
Fu— Fv— L((—~u D> —w) D (v D u))

Lu— L(uDwv) — Lv

Lz — =z

Andras Maté metalogic 24. March

The calculus of propositional logic Kpy,

The calculus begins with the first five rules of K Language(PL) and
continues as follows:

6.
7.
8.
9.
9*.

Fu— Fv— L(u> (vDu))

Fu— Fv— Fw— L((uD (v Dw)) D ((uDdwv) D (udw)))
Fu— Fv— L((—~u D> —w) D (v D u))

Lu— L(uDwv) — Lv

Lz — =z

This calculus defines the class of provable formulas of
propositional logic (shortly: the propositional logic) Lpr.

Andras Maté metalogic 24. March

A language of first-order logic (informal description)

Andras Maté metalogic 24. March

A language of first-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

Andras Maté metalogic 24. March

A language of first-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the mazimal first-order language, with an
infinite sequence of predicates and name functors for any arity.

Andras Maté metalogic 24. March

A language of first-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the mazimal first-order language, with an
infinite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: ¢ for
variables, w for predicates and ¢ for name functors.

Andras Maté metalogic 24. March

A language of first-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the mazimal first-order language, with an
infinite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: ¢ for
variables, w for predicates and ¢ for name functors.

Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Andras Maté metalogic 24. March

A language of first-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the mazimal first-order language, with an
infinite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: ¢ for
variables, w for predicates and ¢ for name functors.

Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.

Andras Maté metalogic 24. March

A language of first-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the mazimal first-order language, with an
infinite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: ¢ for
variables, w for predicates and ¢ for name functors.

Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.

The (primitive) logical constants of first-order logic are the
usual ones. The alphabet of our first-order language:

ALanguage(FOL) - {())) L, 0, k%, p, T, =, 7, Da \V/}

Andras Maté metalogic 24. March

A language of first-order logic (informally, continued)

Andras Maté metalogic 24. March

A language of first-order logic (informally, continued)

Andras Maté metalogic 24. March

A language of first-order logic (informally, continued)

We apply name functors and predicates always for one argument
(individual term) only, i.e. we fill in the argument places one by
one.

Andras Maté metalogic 24. March

A language of first-order logic (informally, continued)

We apply name functors and predicates always for one argument

(individual term) only, i.e. we fill in the argument places one by
one.

Auxiliary letters (with intended meanings in brackets): I
(index), A (arity), V (variable), N (name functor), P

(predicate), T' (term), F' (formula). We use calculus variables as
needed (not to be changed with object-language variables).

Andras Maté metalogic 24. March

The calculus Kpgnguqge(FOL)

Andras Maté metalogic 24. March

The calculus Kpgnguqge(FOL)

1. I The empty word is an index.

Andras Maté metalogic 24. March

The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
2. Ix— Ixt

Andras Maté metalogic 24. March

The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
2. Ix— Ixt
3. A The empty word is an arity.

Andras Maté metalogic 24. March

The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
2. Ix— Ixt

3. A The empty word is an arity.
4. Ax — Axo

Andras Maté metalogic 24. March

The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
2. Ix— Ixt

3. A The empty word is an arity.
4. Ax — Axo

5. Iz — Vix

Andras Maté metalogic 24. March

The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
2. Ix— Ixt

3. A The empty word is an arity.
4. Ax — Axo

5. Iz — Vix

6. Az — Iy — xNopxy n-ary name functors

Andras Maté metalogic 24. March

The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
2. Ix— Ixt

3. A The empty word is an arity.
4. Ax — Axo

5. Iz — Vix

6. Az — Iy — xNopxy n-ary name functors
7. Az — Iz — xPmxy n-ary predicates

Andras Maté metalogic 24. March

The calculus Kpgnguqge(FOL)

1.
2.
3.
4.
O.
6.
7.
8.

1

Ix — Ixt

A

Ax — Axo
Ix — Vix

Ax — Iy — xNopxy
Ax — Ix — xPrxy
Ve —Tx

Andras Maté

The empty word is an index.

The empty word is an arity.

n-ary name functors

n-ary predicates

The variables are terms.

metalogic 24. March

The calculus Kpgnguqge(FOL)

1.
2.
3.
4.
O.
6.
7.
8.
9.

1

Ix — Ixt

A

Ax — Axo
Ix — Vix

Ax — Iy — xNopxy
Ax — Ix — xPrxy
Ve —Tx

Nz —» Tx

Andras Maté

The empty word is an index.

The empty word is an arity.

n-ary name functors

n-ary predicates

The variables are terms.

Zero-argument name functors

metalogic 24. March

are terms.

The calculus Kpgnguqge(FOL)

1.
2.
3.
4.
O.
6.
7.
8.
9.

—_
e

1 The empty word is an index.

Ix — Ixt

A The empty word is an arity.

Ax — Axo

Ix — Vix

Ax — Iy — xNopxy n-ary name functors

Ax — Iz — xPrxy n-ary predicates

Ve —Tx The variables are terms.

Nz —» Tx Zero-argument name functors
are terms.

Ax — xoNy — Tz — xNyz Application of name functors

with at least one argument

Andras Maté metalogic 24. March

The calculus Ky qpguage(ror) (continuation)

Andras Maté metalogic 24. March

The calculus Ky qpguage(ror) (continuation)

11. Az — zoPy — Tz — xPyz Application of predicates

Andras Maté metalogic 24. March

The calculus Ky qpguage(ror) (continuation)

11. Az — zoPy — Tz — xPyz Application of predicates
12. Pxr — Fx Zero-arity predicates

are formulas.

Andras Maté metalogic 24. March

The calculus Ky qpguage(ror) (continuation)

11. Az — zoPy — Tz — xPyz Application of predicates
12. Pxr — Fx Zero-arity predicates

are formulas.
13. Te—>Ty— F(x=1y)

Andras Maté metalogic 24. March

The calculus Ky qpguage(ror) (continuation)

11.
12.

13.
14.

Ax — voPy — Tz — xPyz Application of predicates

Pz — Fx Zero-arity predicates
are formulas.

Ter — Ty — F(z=vy)

Fx — F-x

Andras Maté metalogic 24. March

The calculus Ky qpguage(ror) (continuation)

11.
12.

13.
14.
15.

Ax — voPy — Tz — xPyz Application of predicates

Pz — Fx Zero-arity predicates
are formulas.

Ter — Ty — F(z=vy)

Fx — F-x

Fx — Fy— F(z Dy)

Andras Maté metalogic 24. March

The calculus Ky qpguage(ror) (continuation)

11.
12.

13.
14.
15.
16.

Ax — voPy — Tz — xPyz Application of predicates

Pz — Fx Zero-arity predicates
are formulas.

Ter — Ty — F(z=vy)

Fx — F-x

Fx — Fy— F(z Dy)

Ve — Fy — FVzy

Andras Maté metalogic 24. March

The calculus Ky qpguage(ror) (continuation)

11.
12.

13.
14.
15.
16.
16™.

Ax — voPy — Tz — xPyz Application of predicates

Pz — Fx Zero-arity predicates
are formulas.

Ter — Ty — F(z=vy)

Fx — F-x

Fx — Fy— F(z Dy)

Ve — Fy — FVzy

Fr—x Release rule

Andras Maté metalogic 24. March

Closing remark and a homework

Andras Maté metalogic 24. March

Closing remark and a homework

The Aranguage(ror)-strings derivable in this calculus are just
the wit’s of our Language(FOL). By changing the release rule
and/or leaving off some rules we could define other syntactical
categories (terms, atomic formulas, etc.) of the language.

Andras Maté metalogic 24. March

Closing remark and a homework

The Aranguage(ror)-strings derivable in this calculus are just
the wit’s of our Language(FOL). By changing the release rule
and/or leaving off some rules we could define other syntactical
categories (terms, atomic formulas, etc.) of the language.

Homework: How to change Kr,nguage(ror) to define the terms
resp. atomic formulas of our language?

Andras Maté metalogic 24. March

Hypercalculi and their use

Andras Maté metalogic 24. March

Hypercalculi and their use

Hypercalculi are canonical calculi that we use to define classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

metalogic 24. March

Hypercalculi and their use

Hypercalculi are canonical calculi that we use to define classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were defined inductively.

Andras Maté metalogic 24. March

Hypercalculi and their use

Hypercalculi are canonical calculi that we use to define classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were defined inductively.

Canonical calculi are finite sequences as rules(special strings).
To represent them as strings we need a sequencing character
distinct from the letters.

Andras Maté metalogic 24. March

Hypercalculi and their use

Hypercalculi are canonical calculi that we use to define classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were defined inductively.

Canonical calculi are finite sequences as rules(special strings).
To represent them as strings we need a sequencing character
distinct from the letters.

Andras Maté metalogic 24. March

Hypercalculi and their use

Hypercalculi are canonical calculi that we use to define classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were defined inductively.

Canonical calculi are finite sequences as rules(special strings).
To represent them as strings we need a sequencing character
distinct from the letters.

An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of every canonical calculus will derive the code of itself.

Andras Maté metalogic 24. March

How to represent an arbitrary calculus C?

metalogic 24. March

How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.

Andras Maté metalogic 24. March

How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Andras Maté metalogic 24. March

How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{a, B}-strings beginning with a and followed by f-s.

Andras Maté metalogic 24. March

How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{a, B}-strings beginning with a and followed by f-s.

The C-variables will be translated similarly, but the beginning
character will be £ instead of «.

Andras Maté metalogic 24. March

How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{a, B}-strings beginning with a and followed by f-s.

The C-variables will be translated similarly, but the beginning
character will be £ instead of «.

Translation of the arrow: >>. Sequencing character: .

Andras Maté metalogic 24. March

How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{a, B}-strings beginning with a and followed by f-s.

The C-variables will be translated similarly, but the beginning
character will be £ instead of «.

Translation of the arrow: >>. Sequencing character: .

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc: {Oé, /87 57 >, *}

Andras Maté metalogic 24. March

The alphabet of H;

Andras Maté metalogic 24. March

The alphabet of H;

The alphabet will contain A.. as a subset. Above that, we’ll
need the following auxiliary characters (intended meaning in
brackets):

Andras Maté metalogic 24. March

The alphabet of H;

The alphabet will contain A.. as a subset. Above that, we’ll
need the following auxiliary characters (intended meaning in
brackets):

o I (index)

e L (Translation of a letter of C)

e V' (Translation of a C-variable)

o W (Translation of a word, i.e. variable-free string)
°

T (Translation of a term, i.e. string of letters and
variables)

R (Translation of a C-rule)

K (Translation of an arbitrary calculus C)

Andras Maté metalogic 24. March

The calculus H; (beginning)

1

Iz — Ixp

Ix — Lazx

Iex — Vx

W

Wax — Ly — Wazy
T

Tx — Ly — Tzy

© 0N o WD

Te - Vy— Txy

Andras Maté metalogic 24. March

The calculus H; (continuation)

Andras Maté metalogic 24. March

The calculus H; (continuation)

10.
11.
12.
13.

Tr — Rz
Tr - Ry — Rx >y
Rr — Kz
Kx — Ry — Kz xy

13* Kx— =2

Andras Maté metalogic 24. March

The calculus H; (continuation)

10. Tz — Rz

11. Tx - Ry — Rx >y
12. Rx — Kx

13. Koz — Ry — Kxxy
13" Kz —x

This calculus derives the translation of any calculus over any

alphabet (including it

s own translation hy).

Andras Maté metalogic 24. March

