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The language of propositional logic

We have an infinite sequence of propositional constants

Do, P1s ---5 Pn, --.and two logical connectives: =, D. How to
define the class of wif’s as an inductively defined class over a
finite alphabet, possibly avoiding the use of natural numbers?
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The language of propositional logic

We have an infinite sequence of propositional constants

Do, P1s ---5 Pn, --.and two logical connectives: =, D. How to
define the class of wif’s as an inductively defined class over a
finite alphabet, possibly avoiding the use of natural numbers?

Instead of p, we write m¢...t. We don’t need numbers for
indexes, but we need that our propositional constants can be
distinguished from each other.

Alphabet: Apr, ={(, ), 7, ¢, =, D}. Auxiliary letters: I for
inder and F for formula. The calculus K,y guage(pr):

147
Ix — IxL

1

2

3. Irx— Frzx
4. Fzr — F—x
5

Fx — Fy— F(z Dy)
5. Fx —«x
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o The numbers in the left column are for the sake of reference
only; they don’t belong to the calculus.
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Comments to the above calculus

o The numbers in the left column are for the sake of reference
only; they don’t belong to the calculus.

o The sign of the empty word can be omitted from the 1. rule.

e 5*. is a release rule: it erases an auxiliary letter. We can
define the wit’s of PL as the Apr° — strings derivable in
this calculus.
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Comments to the above calculus

o The numbers in the left column are for the sake of reference
only; they don’t belong to the calculus.

o The sign of the empty word can be omitted from the 1. rule.

e 5*. is a release rule: it erases an auxiliary letter. We can
define the wit’s of PL as the Apr° — strings derivable in
this calculus.

o The language of propositional logic could have been defined
without using auxiliary letters (see textbook p. 40). But it
is not always possible to eliminate the auxiliary letters and
they make our work simpler and more transparent even if
they (or some of them) are not necessary.
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We want to have a calculus that derives the provable formulas of
this language.
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We want to have a calculus that derives the provable formulas of
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New auxiliary letter: L with the intended meaning ,provable
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New auxiliary letter: L with the intended meaning ,provable
formula”.

The rules after the definition of the formulas will be just the
usual axiom schemes of propositional logic.
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Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.

We include the (first five rules of) the previous calculus.

New auxiliary letter: L with the intended meaning ,provable
formula”.

The rules after the definition of the formulas will be just the
usual axiom schemes of propositional logic.

The rule of detachment (for ‘D’) will appear again as a rule of
our calculus.

We need now a release rule for L.
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The calculus of propositional logic Kpy,
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The calculus of propositional logic Kpy,

The calculus begins with the first five rules of K Language(PL) and
continues as follows:
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The calculus of propositional logic Kpy,

The calculus begins with the first five rules of K Language(PL) and
continues as follows:

6.
7.
8.
9.
9*.

Fu— Fv— L(u> (vDu))

Fu— Fv— Fw— L((uD (v Dw)) D ((uDdwv) D (udw)))
Fu— Fv— L((—~u D> —w) D (v D u))

Lu— L(uDwv) — Lv

Lz — =z
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The calculus of propositional logic Kpy,

The calculus begins with the first five rules of K Language(PL) and
continues as follows:

6.
7.
8.
9.
9*.

Fu— Fv— L(u> (vDu))

Fu— Fv— Fw— L((uD (v Dw)) D ((uDdwv) D (udw)))
Fu— Fv— L((—~u D> —w) D (v D u))

Lu— L(uDwv) — Lv

Lz — =z

This calculus defines the class of provable formulas of
propositional logic (shortly: the propositional logic) Lpr.
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infinite sequence of predicates and name functors for any arity.
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from each other by indexes.
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This language will be the mazimal first-order language, with an
infinite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: ¢ for
variables, w for predicates and ¢ for name functors.

Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
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A language of first-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the mazimal first-order language, with an
infinite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: ¢ for
variables, w for predicates and ¢ for name functors.

Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.

The (primitive) logical constants of first-order logic are the
usual ones. The alphabet of our first-order language:

ALanguage(FOL) - {() )) L, 0, k%, p, T, =, 7, Da \V/}
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A language of first-order logic (informally, continued)
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A language of first-order logic (informally, continued)
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A language of first-order logic (informally, continued)

We apply name functors and predicates always for one argument
(individual term) only, i.e. we fill in the argument places one by
one.
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A language of first-order logic (informally, continued)

We apply name functors and predicates always for one argument

(individual term) only, i.e. we fill in the argument places one by
one.

Auxiliary letters (with intended meanings in brackets): I
(index), A (arity), V (variable), N (name functor), P

(predicate), T' (term), F' (formula). We use calculus variables as
needed (not to be changed with object-language variables).
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The calculus Kpgnguqge(FOL)
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The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
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The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
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The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
2. Ix— Ixt
3. A The empty word is an arity.
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The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
2. Ix— Ixt

3. A The empty word is an arity.
4. Ax — Axo
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The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
2. Ix— Ixt

3. A The empty word is an arity.
4. Ax — Axo

5. Iz — Vix
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The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
2. Ix— Ixt

3. A The empty word is an arity.
4. Ax — Axo

5. Iz — Vix

6. Az — Iy — xNopxy n-ary name functors
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The calculus Kpgnguqge(FOL)

1. I The empty word is an index.
2. Ix— Ixt

3. A The empty word is an arity.
4. Ax — Axo

5. Iz — Vix

6. Az — Iy — xNopxy n-ary name functors
7. Az — Iz — xPmxy n-ary predicates
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The calculus Kpgnguqge(FOL)

1.
2.
3.
4.
O.
6.
7.
8.

1

Ix — Ixt

A

Ax — Axo
Ix — Vix

Ax — Iy — xNopxy
Ax — Ix — xPrxy
Ve —Tx

Andras Maté

The empty word is an index.

The empty word is an arity.

n-ary name functors

n-ary predicates

The variables are terms.
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The calculus Kpgnguqge(FOL)

1.
2.
3.
4.
O.
6.
7.
8.
9.

1

Ix — Ixt

A

Ax — Axo
Ix — Vix

Ax — Iy — xNopxy
Ax — Ix — xPrxy
Ve —Tx

Nz —» Tx

Andras Maté

The empty word is an index.

The empty word is an arity.

n-ary name functors

n-ary predicates

The variables are terms.

Zero-argument name functors
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The calculus Kpgnguqge(FOL)

1.
2.
3.
4.
O.
6.
7.
8.
9.

—_
e

1 The empty word is an index.

Ix — Ixt

A The empty word is an arity.

Ax — Axo

Ix — Vix

Ax — Iy — xNopxy n-ary name functors

Ax — Iz — xPrxy n-ary predicates

Ve —Tx The variables are terms.

Nz —» Tx Zero-argument name functors
are terms.

Ax — xoNy — Tz — xNyz Application of name functors

with at least one argument
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The calculus Ky qpguage(ror) (continuation)
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The calculus Ky qpguage(ror) (continuation)

11. Az — zoPy — Tz — xPyz Application of predicates
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The calculus Ky qpguage(ror) (continuation)

11. Az — zoPy — Tz — xPyz Application of predicates
12. Pxr — Fx Zero-arity predicates

are formulas.
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The calculus Ky qpguage(ror) (continuation)

11. Az — zoPy — Tz — xPyz Application of predicates
12. Pxr — Fx Zero-arity predicates

are formulas.
13. Te—>Ty— F(x=1y)
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The calculus Ky qpguage(ror) (continuation)

11.
12.

13.
14.

Ax — voPy — Tz — xPyz Application of predicates

Pz — Fx Zero-arity predicates
are formulas.

Ter — Ty — F(z=vy)

Fx — F-x
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The calculus Ky qpguage(ror) (continuation)

11.
12.

13.
14.
15.

Ax — voPy — Tz — xPyz Application of predicates

Pz — Fx Zero-arity predicates
are formulas.

Ter — Ty — F(z=vy)

Fx — F-x

Fx — Fy— F(z Dy)
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The calculus Ky qpguage(ror) (continuation)

11.
12.

13.
14.
15.
16.

Ax — voPy — Tz — xPyz Application of predicates

Pz — Fx Zero-arity predicates
are formulas.

Ter — Ty — F(z=vy)

Fx — F-x

Fx — Fy— F(z Dy)

Ve — Fy — FVzy
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The calculus Ky qpguage(ror) (continuation)

11.
12.

13.
14.
15.
16.
16™.

Ax — voPy — Tz — xPyz Application of predicates

Pz — Fx Zero-arity predicates
are formulas.

Ter — Ty — F(z=vy)

Fx — F-x

Fx — Fy— F(z Dy)

Ve — Fy — FVzy

Fr—x Release rule
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Closing remark and a homework
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Closing remark and a homework

The Aranguage(ror)-strings derivable in this calculus are just
the wit’s of our Language(FOL). By changing the release rule
and/or leaving off some rules we could define other syntactical
categories (terms, atomic formulas, etc.) of the language.
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Closing remark and a homework

The Aranguage(ror)-strings derivable in this calculus are just
the wit’s of our Language(FOL). By changing the release rule
and/or leaving off some rules we could define other syntactical
categories (terms, atomic formulas, etc.) of the language.

Homework: How to change Kr,nguage(ror) to define the terms
resp. atomic formulas of our language?
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Hypercalculi and their use

Hypercalculi are canonical calculi that we use to define classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.
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Hypercalculi and their use

Hypercalculi are canonical calculi that we use to define classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were defined inductively.
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Canonical calculi are finite sequences as rules(special strings).
To represent them as strings we need a sequencing character
distinct from the letters.
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of canonical calculi (in some encoded form) and other general
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derivability in a canonical calculus:
both were defined inductively.

Canonical calculi are finite sequences as rules(special strings).
To represent them as strings we need a sequencing character
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Hypercalculi and their use

Hypercalculi are canonical calculi that we use to define classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were defined inductively.

Canonical calculi are finite sequences as rules(special strings).
To represent them as strings we need a sequencing character
distinct from the letters.

An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of every canonical calculus will derive the code of itself.
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How to represent an arbitrary calculus C?
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How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.
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How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.
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How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{a, B}-strings beginning with a and followed by f-s.
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How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{a, B}-strings beginning with a and followed by f-s.

The C-variables will be translated similarly, but the beginning
character will be £ instead of «.
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How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{a, B}-strings beginning with a and followed by f-s.

The C-variables will be translated similarly, but the beginning
character will be £ instead of «.

Translation of the arrow: >>. Sequencing character: .
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How to represent an arbitrary calculus C?

We want to construct a calculus H; that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{a, B}-strings beginning with a and followed by f-s.

The C-variables will be translated similarly, but the beginning
character will be £ instead of «.

Translation of the arrow: >>. Sequencing character: .

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc: {Oé, /87 57 >, *}
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The alphabet of H;
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The alphabet of H;

The alphabet will contain A.. as a subset. Above that, we’ll
need the following auxiliary characters (intended meaning in
brackets):
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The alphabet of H;

The alphabet will contain A.. as a subset. Above that, we’ll
need the following auxiliary characters (intended meaning in
brackets):

o I (index)

e L (Translation of a letter of C)

e V' (Translation of a C-variable)

o W  (Translation of a word, i.e. variable-free string)
°

T (Translation of a term, i.e. string of letters and
variables )

R (Translation of a C-rule)

K (Translation of an arbitrary calculus C)
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The calculus H; (beginning)

1

Iz — Ixp

Ix — Lazx

Iex — Vx

W

Wax — Ly — Wazy
T

Tx — Ly — Tzy

© 0N o WD

Te - Vy— Txy

Andras Maté metalogic 24. March



The calculus H; (continuation)
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The calculus H; (continuation)

10.
11.
12.
13.

Tr — Rz
Tr - Ry — Rx >y
Rr — Kz
Kx — Ry — Kz xy

13* Kx— =2
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The calculus H; (continuation)

10. Tz — Rz

11. Tx - Ry — Rx >y
12. Rx — Kx

13. Koz — Ry — Kxxy
13" Kz —x

This calculus derives the translation of any calculus over any

alphabet (including it

s own translation hy).
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