
Some canonical calculi and logical languages
The concept of hypercalculus

András Máté

24.03.2023

András Máté metalogic 24. March



The language of propositional logic

We have an in�nite sequence of propositional constants
p0, p1, . . . , pn, . . . and two logical connectives: ¬, ⊃. How to
de�ne the class of w�'s as an inductively de�ned class over a
�nite alphabet, possibly avoiding the use of natural numbers?

Instead of pn we write πι . . . ι. We don't need numbers for
indexes, but we need that our propositional constants can be
distinguished from each other.

Alphabet: APL = {(, ), π, ι, ¬,⊃}. Auxiliary letters: I for
index and F for formula. The calculus KLanguage(PL):

1. I∅
2. Ix → Ixι

3. Ix → Fπx

4. Fx → F¬x
5. Fx → Fy → F (x ⊃ y)

5∗. Fx → x

András Máté metalogic 24. March



The language of propositional logic

We have an in�nite sequence of propositional constants
p0, p1, . . . , pn, . . . and two logical connectives: ¬, ⊃. How to
de�ne the class of w�'s as an inductively de�ned class over a
�nite alphabet, possibly avoiding the use of natural numbers?

Instead of pn we write πι . . . ι. We don't need numbers for
indexes, but we need that our propositional constants can be
distinguished from each other.

Alphabet: APL = {(, ), π, ι, ¬,⊃}. Auxiliary letters: I for
index and F for formula. The calculus KLanguage(PL):

1. I∅
2. Ix → Ixι

3. Ix → Fπx

4. Fx → F¬x
5. Fx → Fy → F (x ⊃ y)

5∗. Fx → x

András Máté metalogic 24. March



The language of propositional logic

We have an in�nite sequence of propositional constants
p0, p1, . . . , pn, . . . and two logical connectives: ¬, ⊃. How to
de�ne the class of w�'s as an inductively de�ned class over a
�nite alphabet, possibly avoiding the use of natural numbers?

Instead of pn we write πι . . . ι. We don't need numbers for
indexes, but we need that our propositional constants can be
distinguished from each other.

Alphabet: APL = {(, ), π, ι, ¬,⊃}. Auxiliary letters: I for
index and F for formula. The calculus KLanguage(PL):

1. I∅
2. Ix → Ixι

3. Ix → Fπx

4. Fx → F¬x
5. Fx → Fy → F (x ⊃ y)

5∗. Fx → x

András Máté metalogic 24. March



The language of propositional logic

We have an in�nite sequence of propositional constants
p0, p1, . . . , pn, . . . and two logical connectives: ¬, ⊃. How to
de�ne the class of w�'s as an inductively de�ned class over a
�nite alphabet, possibly avoiding the use of natural numbers?

Instead of pn we write πι . . . ι. We don't need numbers for
indexes, but we need that our propositional constants can be
distinguished from each other.

Alphabet: APL = {(, ), π, ι, ¬,⊃}. Auxiliary letters: I for
index and F for formula. The calculus KLanguage(PL):

1. I∅
2. Ix → Ixι

3. Ix → Fπx

4. Fx → F¬x
5. Fx → Fy → F (x ⊃ y)

5∗. Fx → x

András Máté metalogic 24. March



The language of propositional logic

We have an in�nite sequence of propositional constants
p0, p1, . . . , pn, . . . and two logical connectives: ¬, ⊃. How to
de�ne the class of w�'s as an inductively de�ned class over a
�nite alphabet, possibly avoiding the use of natural numbers?

Instead of pn we write πι . . . ι. We don't need numbers for
indexes, but we need that our propositional constants can be
distinguished from each other.

Alphabet: APL = {(, ), π, ι, ¬,⊃}. Auxiliary letters: I for
index and F for formula. The calculus KLanguage(PL):

1. I∅
2. Ix → Ixι

3. Ix → Fπx

4. Fx → F¬x
5. Fx → Fy → F (x ⊃ y)

5∗. Fx → x
András Máté metalogic 24. March



Comments to the above calculus

The numbers in the left column are for the sake of reference
only; they don't belong to the calculus.

The sign of the empty word can be omitted from the 1. rule.

5*. is a release rule: it erases an auxiliary letter. We can
de�ne the w�'s of PL as the APL

◦ − strings derivable in
this calculus.

The language of propositional logic could have been de�ned
without using auxiliary letters (see textbook p. 40). But it
is not always possible to eliminate the auxiliary letters and
they make our work simpler and more transparent even if
they (or some of them) are not necessary.

András Máté metalogic 24. March



Comments to the above calculus

The numbers in the left column are for the sake of reference
only; they don't belong to the calculus.

The sign of the empty word can be omitted from the 1. rule.

5*. is a release rule: it erases an auxiliary letter. We can
de�ne the w�'s of PL as the APL

◦ − strings derivable in
this calculus.

The language of propositional logic could have been de�ned
without using auxiliary letters (see textbook p. 40). But it
is not always possible to eliminate the auxiliary letters and
they make our work simpler and more transparent even if
they (or some of them) are not necessary.

András Máté metalogic 24. March



Comments to the above calculus

The numbers in the left column are for the sake of reference
only; they don't belong to the calculus.

The sign of the empty word can be omitted from the 1. rule.

5*. is a release rule: it erases an auxiliary letter. We can
de�ne the w�'s of PL as the APL

◦ − strings derivable in
this calculus.

The language of propositional logic could have been de�ned
without using auxiliary letters (see textbook p. 40). But it
is not always possible to eliminate the auxiliary letters and
they make our work simpler and more transparent even if
they (or some of them) are not necessary.

András Máté metalogic 24. March



Comments to the above calculus

The numbers in the left column are for the sake of reference
only; they don't belong to the calculus.

The sign of the empty word can be omitted from the 1. rule.

5*. is a release rule: it erases an auxiliary letter. We can
de�ne the w�'s of PL as the APL

◦ − strings derivable in
this calculus.

The language of propositional logic could have been de�ned
without using auxiliary letters (see textbook p. 40). But it
is not always possible to eliminate the auxiliary letters and
they make our work simpler and more transparent even if
they (or some of them) are not necessary.

András Máté metalogic 24. March



Comments to the above calculus

The numbers in the left column are for the sake of reference
only; they don't belong to the calculus.

The sign of the empty word can be omitted from the 1. rule.

5*. is a release rule: it erases an auxiliary letter. We can
de�ne the w�'s of PL as the APL

◦ − strings derivable in
this calculus.

The language of propositional logic could have been de�ned
without using auxiliary letters (see textbook p. 40). But it
is not always possible to eliminate the auxiliary letters and
they make our work simpler and more transparent even if
they (or some of them) are not necessary.

András Máté metalogic 24. March



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.
We include the (�rst �ve rules of) the previous calculus.
New auxiliary letter: L with the intended meaning �provable
formula�.
The rules after the de�nition of the formulas will be just the
usual axiom schemes of propositional logic.
The rule of detachment (for `⊃') will appear again as a rule of
our calculus.
We need now a release rule for L.

András Máté metalogic 24. March



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.

We include the (�rst �ve rules of) the previous calculus.
New auxiliary letter: L with the intended meaning �provable
formula�.
The rules after the de�nition of the formulas will be just the
usual axiom schemes of propositional logic.
The rule of detachment (for `⊃') will appear again as a rule of
our calculus.
We need now a release rule for L.

András Máté metalogic 24. March



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.
We include the (�rst �ve rules of) the previous calculus.

New auxiliary letter: L with the intended meaning �provable
formula�.
The rules after the de�nition of the formulas will be just the
usual axiom schemes of propositional logic.
The rule of detachment (for `⊃') will appear again as a rule of
our calculus.
We need now a release rule for L.

András Máté metalogic 24. March



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.
We include the (�rst �ve rules of) the previous calculus.
New auxiliary letter: L with the intended meaning �provable
formula�.

The rules after the de�nition of the formulas will be just the
usual axiom schemes of propositional logic.
The rule of detachment (for `⊃') will appear again as a rule of
our calculus.
We need now a release rule for L.

András Máté metalogic 24. March



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.
We include the (�rst �ve rules of) the previous calculus.
New auxiliary letter: L with the intended meaning �provable
formula�.
The rules after the de�nition of the formulas will be just the
usual axiom schemes of propositional logic.

The rule of detachment (for `⊃') will appear again as a rule of
our calculus.
We need now a release rule for L.

András Máté metalogic 24. March



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.
We include the (�rst �ve rules of) the previous calculus.
New auxiliary letter: L with the intended meaning �provable
formula�.
The rules after the de�nition of the formulas will be just the
usual axiom schemes of propositional logic.
The rule of detachment (for `⊃') will appear again as a rule of
our calculus.

We need now a release rule for L.

András Máté metalogic 24. March



Propositional logic as calculus (informally)

We want to have a calculus that derives the provable formulas of
this language.
We include the (�rst �ve rules of) the previous calculus.
New auxiliary letter: L with the intended meaning �provable
formula�.
The rules after the de�nition of the formulas will be just the
usual axiom schemes of propositional logic.
The rule of detachment (for `⊃') will appear again as a rule of
our calculus.
We need now a release rule for L.

András Máté metalogic 24. March



The calculus of propositional logic KPL

The calculus begins with the �rst �ve rules of KLanguage(PL) and
continues as follows:

6. Fu → Fv → L(u ⊃ (v ⊃ u))

7. Fu → Fv → Fw → L((u ⊃ (v ⊃ w)) ⊃ ((u ⊃ v) ⊃ (u ⊃ w)))

8. Fu → Fv → L((¬u ⊃ ¬v) ⊃ (v ⊃ u))

9. Lu → L(u ⊃ v) → Lv

9∗. Lx → x

This calculus de�nes the class of provable formulas of
propositional logic (shortly: the propositional logic) LPL.

András Máté metalogic 24. March



The calculus of propositional logic KPL

The calculus begins with the �rst �ve rules of KLanguage(PL) and
continues as follows:

6. Fu → Fv → L(u ⊃ (v ⊃ u))

7. Fu → Fv → Fw → L((u ⊃ (v ⊃ w)) ⊃ ((u ⊃ v) ⊃ (u ⊃ w)))

8. Fu → Fv → L((¬u ⊃ ¬v) ⊃ (v ⊃ u))

9. Lu → L(u ⊃ v) → Lv

9∗. Lx → x

This calculus de�nes the class of provable formulas of
propositional logic (shortly: the propositional logic) LPL.

András Máté metalogic 24. March



The calculus of propositional logic KPL

The calculus begins with the �rst �ve rules of KLanguage(PL) and
continues as follows:

6. Fu → Fv → L(u ⊃ (v ⊃ u))

7. Fu → Fv → Fw → L((u ⊃ (v ⊃ w)) ⊃ ((u ⊃ v) ⊃ (u ⊃ w)))

8. Fu → Fv → L((¬u ⊃ ¬v) ⊃ (v ⊃ u))

9. Lu → L(u ⊃ v) → Lv

9∗. Lx → x

This calculus de�nes the class of provable formulas of
propositional logic (shortly: the propositional logic) LPL.

András Máté metalogic 24. March



The calculus of propositional logic KPL

The calculus begins with the �rst �ve rules of KLanguage(PL) and
continues as follows:

6. Fu → Fv → L(u ⊃ (v ⊃ u))

7. Fu → Fv → Fw → L((u ⊃ (v ⊃ w)) ⊃ ((u ⊃ v) ⊃ (u ⊃ w)))

8. Fu → Fv → L((¬u ⊃ ¬v) ⊃ (v ⊃ u))

9. Lu → L(u ⊃ v) → Lv

9∗. Lx → x

This calculus de�nes the class of provable formulas of
propositional logic (shortly: the propositional logic) LPL.

András Máté metalogic 24. March



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 24. March



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 24. March



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 24. March



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.

Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 24. March



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 24. March



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.

The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 24. March



A language of �rst-order logic (informal description)

Primitive symbols: variables, predicates of any arity, name
functors of any arity

This language will be the maximal �rst-order language, with an
in�nite sequence of predicates and name functors for any arity.

Initial letters for three sorts of primitive symbols: x for
variables, π for predicates and φ for name functors.
Primitive predicates of the same arity resp. primitive name
functors of the same arity resp. variables will be distinguished
from each other by indexes.

Strings of o-s (omicrons) will mark the arity of a predicate resp.
name functor, and they will also count the empty places of the
predicate resp. the name functor.
The (primitive) logical constants of �rst-order logic are the
usual ones. The alphabet of our �rst-order language:

ALanguage(FOL) = {(, ), ι, o, x, φ, π, =, ¬, ⊃, ∀}

András Máté metalogic 24. March



A language of �rst-order logic (informally, continued)

We apply name functors and predicates always for one argument
(individual term) only, i.e. we �ll in the argument places one by
one.

Auxiliary letters (with intended meanings in brackets): I
(index), A (arity), V (variable), N (name functor), P
(predicate), T (term), F (formula). We use calculus variables as
needed (not to be changed with object-language variables).

András Máté metalogic 24. March



A language of �rst-order logic (informally, continued)

We apply name functors and predicates always for one argument
(individual term) only, i.e. we �ll in the argument places one by
one.

Auxiliary letters (with intended meanings in brackets): I
(index), A (arity), V (variable), N (name functor), P
(predicate), T (term), F (formula). We use calculus variables as
needed (not to be changed with object-language variables).

András Máté metalogic 24. March



A language of �rst-order logic (informally, continued)

We apply name functors and predicates always for one argument
(individual term) only, i.e. we �ll in the argument places one by
one.

Auxiliary letters (with intended meanings in brackets): I
(index), A (arity), V (variable), N (name functor), P
(predicate), T (term), F (formula). We use calculus variables as
needed (not to be changed with object-language variables).

András Máté metalogic 24. March



A language of �rst-order logic (informally, continued)

We apply name functors and predicates always for one argument
(individual term) only, i.e. we �ll in the argument places one by
one.

Auxiliary letters (with intended meanings in brackets): I
(index), A (arity), V (variable), N (name functor), P
(predicate), T (term), F (formula). We use calculus variables as
needed (not to be changed with object-language variables).

András Máté metalogic 24. March



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Ix → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 24. March



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Ix → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 24. March



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Ix → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 24. March



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Ix → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 24. March



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Ix → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 24. March



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Ix → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 24. March



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Ix → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 24. March



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Ix → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 24. March



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Ix → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 24. March



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Ix → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 24. March



The calculus KLanguage(FOL)

1. I The empty word is an index.

2. Ix → Ixι

3. A The empty word is an arity.

4. Ax → Axo

5. Ix → V xx

6. Ax → Iy → xNφxy n-ary name functors

7. Ax → Ix → xPπxy n-ary predicates

8. V x → Tx The variables are terms.

9. Nx → Tx Zero-argument name functors

are terms.

10. Ax → xoNy → Tz → xNyz Application of name functors

with at least one argument

András Máté metalogic 24. March



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 24. March



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 24. March



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 24. March



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 24. March



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x

15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 24. March



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 24. March



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy

16∗. Fx → x Release rule

András Máté metalogic 24. March



The calculus KLanguage(FOL) (continuation)

11. Ax → xoPy → Tz → xPyz Application of predicates

12. Px → Fx Zero-arity predicates

are formulas.

13. Tx → Ty → F (x = y)

14. Fx → F¬x
15. Fx → Fy → F (x ⊃ y)

16. V x → Fy → F∀xy
16∗. Fx → x Release rule

András Máté metalogic 24. March



Closing remark and a homework

The ALanguage(FOL)-strings derivable in this calculus are just
the w�'s of our Language(FOL). By changing the release rule
and/or leaving o� some rules we could de�ne other syntactical
categories (terms, atomic formulas, etc.) of the language.

Homework: How to change KLanguage(FOL) to de�ne the terms
resp. atomic formulas of our language?

András Máté metalogic 24. March



Closing remark and a homework

The ALanguage(FOL)-strings derivable in this calculus are just
the w�'s of our Language(FOL). By changing the release rule
and/or leaving o� some rules we could de�ne other syntactical
categories (terms, atomic formulas, etc.) of the language.

Homework: How to change KLanguage(FOL) to de�ne the terms
resp. atomic formulas of our language?

András Máté metalogic 24. March



Closing remark and a homework

The ALanguage(FOL)-strings derivable in this calculus are just
the w�'s of our Language(FOL). By changing the release rule
and/or leaving o� some rules we could de�ne other syntactical
categories (terms, atomic formulas, etc.) of the language.

Homework: How to change KLanguage(FOL) to de�ne the terms
resp. atomic formulas of our language?

András Máté metalogic 24. March



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences as rules(special strings).
To represent them as strings we need a sequencing character

distinct from the letters.
An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of every canonical calculus will derive the code of itself.

András Máté metalogic 24. March



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences as rules(special strings).
To represent them as strings we need a sequencing character

distinct from the letters.
An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of every canonical calculus will derive the code of itself.

András Máté metalogic 24. March



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences as rules(special strings).
To represent them as strings we need a sequencing character

distinct from the letters.
An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of every canonical calculus will derive the code of itself.

András Máté metalogic 24. March



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences as rules(special strings).
To represent them as strings we need a sequencing character

distinct from the letters.

An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of every canonical calculus will derive the code of itself.

András Máté metalogic 24. March



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences as rules(special strings).
To represent them as strings we need a sequencing character

distinct from the letters.

An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of every canonical calculus will derive the code of itself.

András Máté metalogic 24. March



Hypercalculi and their use

Hypercalculi are canonical calculi that we use to de�ne classes
of canonical calculi (in some encoded form) and other general
concepts connected with canonical calculi.

C-rule over an alphabet C;
derivability in a canonical calculus:
both were de�ned inductively.

Canonical calculi are �nite sequences as rules(special strings).
To represent them as strings we need a sequencing character

distinct from the letters.
An informal remark: Hypercalculi are canonical calculi just as
any other calculus. We read the strings they produce as rules,
derivability relations or calculi. The calculus deriving the code
of every canonical calculus will derive the code of itself.

András Máté metalogic 24. March



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 24. March



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 24. March



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 24. March



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 24. March



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 24. March



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 24. March



How to represent an arbitrary calculus C?

We want to construct a calculus H1 that derives strings
representing any canonical calculus.

Be C an arbitrary canonical calculus. First, translate it into a
string of our new calculus by letter.

Letters of the alphabet of C will be represented as
{α, β}-strings beginning with α and followed by β-s.

The C-variables will be translated similarly, but the beginning
character will be ξ instead of α.

Translation of the arrow: ≫. Sequencing character: ∗.

So the the strings that represent calculi will consist of the
characters of the following alphabet:

Acc = {α, β, ξ, ≫, ∗}

András Máté metalogic 24. March



The alphabet of H1

The alphabet will contain Acc as a subset. Above that, we'll
need the following auxiliary characters (intended meaning in
brackets):

I (index)

L (Translation of a letter of C)

V (Translation of a C-variable)

W (Translation of a word, i.e. variable-free string)

T (Translation of a term, i.e. string of letters and
variables )

R (Translation of a C-rule)

K (Translation of an arbitrary calculus C)

András Máté metalogic 24. March



The alphabet of H1

The alphabet will contain Acc as a subset. Above that, we'll
need the following auxiliary characters (intended meaning in
brackets):

I (index)

L (Translation of a letter of C)

V (Translation of a C-variable)

W (Translation of a word, i.e. variable-free string)

T (Translation of a term, i.e. string of letters and
variables )

R (Translation of a C-rule)

K (Translation of an arbitrary calculus C)

András Máté metalogic 24. March



The alphabet of H1

The alphabet will contain Acc as a subset. Above that, we'll
need the following auxiliary characters (intended meaning in
brackets):

I (index)

L (Translation of a letter of C)

V (Translation of a C-variable)

W (Translation of a word, i.e. variable-free string)

T (Translation of a term, i.e. string of letters and
variables )

R (Translation of a C-rule)

K (Translation of an arbitrary calculus C)

András Máté metalogic 24. March



The calculus H1 (beginning)

1. I

2. Ix → Ixβ

3. Ix → Lαx

4. Ix → V ξx

5. W

6. Wx → Ly → Wxy

7. T

8. Tx → Ly → Txy

9. Tx → V y → Txy

András Máté metalogic 24. March



The calculus H1 (continuation)

10. Tx → Rx

11. Tx → Ry → Rx ≫ y

12. Rx → Kx

13. Kx → Ry → Kx ∗ y
13∗ Kx → x

This calculus derives the translation of any calculus over any
alphabet (including its own translation h1).

András Máté metalogic 24. March



The calculus H1 (continuation)

10. Tx → Rx

11. Tx → Ry → Rx ≫ y

12. Rx → Kx

13. Kx → Ry → Kx ∗ y
13∗ Kx → x

This calculus derives the translation of any calculus over any
alphabet (including its own translation h1).

András Máté metalogic 24. March



The calculus H1 (continuation)

10. Tx → Rx

11. Tx → Ry → Rx ≫ y

12. Rx → Kx

13. Kx → Ry → Kx ∗ y
13∗ Kx → x

This calculus derives the translation of any calculus over any
alphabet (including its own translation h1).

András Máté metalogic 24. March


