The (negation) incompleteness of the first-order theory of canonical calculi and the unprovability of consistency

András Máté

19.05.2023

Diagonalization in CC (preparatory steps)

Diagonalization in CC (preparatory steps)

Lemma 1.: the true closed atomic formulas of $\mathcal{L}^{1 *}$ resp. \mathcal{L}^{10} are all provable in $\mathbf{C C}{ }^{*}$ resp. in CC.

Diagonalization in CC (preparatory steps)

Lemma 1.: the true closed atomic formulas of $\mathcal{L}^{1 *}$ resp. \mathcal{L}^{10} are all provable in $\mathbf{C C}{ }^{*}$ resp. in CC.
The theorems of $\mathbf{C C}{ }^{*}$ can be defined by the calculus Σ^{*} and the theorems of CC by Σ. They contain some auxiliary letters to describe the language of $\mathbf{C C}$ * resp. of $\mathbf{C C}$, e.g. \mathbf{F} for formula and \mathbf{S} for substitution. (Boldface is used to distinguish auxiliary letters of these calculi from the auxiliary letters of the hypercalculi.)

Diagonalization in CC (preparatory steps)

Lemma 1.: the true closed atomic formulas of $\mathcal{L}^{1 *}$ resp. \mathcal{L}^{10} are all provable in $\mathbf{C C}{ }^{*}$ resp. in CC.
The theorems of $\mathbf{C C}{ }^{*}$ can be defined by the calculus Σ^{*} and the theorems of CC by Σ. They contain some auxiliary letters to describe the language of $\mathbf{C C}$ * resp. of $\mathbf{C C}$, e.g. \mathbf{F} for formula and \mathbf{S} for substitution. (Boldface is used to distinguish auxiliary letters of these calculi from the auxiliary letters of the hypercalculi.)
In constructing the hypercalculi \mathbf{H}_{2} and \mathbf{H}_{3} we have used an encoding procedure. Let us denote the code of a string f by $[f]^{\prime}$ (the square brackets can be omitted if f consists of a single letter or a metavariable). Be $\left[\Sigma^{*}\right]^{\prime}=\sigma^{*}$ and $\Sigma^{\prime}=\sigma$.

Diagonalization in CC (preparatory steps)

Lemma 1.: the true closed atomic formulas of $\mathcal{L}^{1 *}$ resp. \mathcal{L}^{10} are all provable in $\mathbf{C C}{ }^{*}$ resp. in CC.
The theorems of $\mathbf{C C}{ }^{*}$ can be defined by the calculus Σ^{*} and the theorems of CC by Σ. They contain some auxiliary letters to describe the language of $\mathbf{C C}$ * resp. of $\mathbf{C C}$, e.g. \mathbf{F} for formula and \mathbf{S} for substitution. (Boldface is used to distinguish auxiliary letters of these calculi from the auxiliary letters of the hypercalculi.)
In constructing the hypercalculi \mathbf{H}_{2} and \mathbf{H}_{3} we have used an encoding procedure. Let us denote the code of a string f by $[f]^{\prime}$ (the square brackets can be omitted if f consists of a single letter or a metavariable). Be $\left[\Sigma^{*}\right]^{\prime}=\sigma^{*}$ and $\Sigma^{\prime}=\sigma$.
Lemma 2.: If a string f is derivable in Σ, then $\sigma D f^{\prime}$ is derivable in \mathbf{H}_{2}. Therefore, $D(\sigma)\left(f^{\prime}\right)$ is a true atomic formula of \mathcal{L}^{10}. According to Lemma 1., it is a theorem of CC.

The diagonal formula

The diagonal formula

Be A a formula with at most one variable x of the language \mathcal{L}^{10}, $A^{\prime}=a, B=A^{a / x}$ and $B^{\prime}=b$.

The diagonal formula

Be A a formula with at most one variable x of the language \mathcal{L}^{10}, $A^{\prime}=a, B=A^{a / x}$ and $B^{\prime}=b$.
Let us assume first that $\Gamma_{0} \vdash B$. In this case, Σ derives the words $\mathbf{F} A, B \mathbf{S} A \mathbf{S} a \mathbf{S} x, B$.

The diagonal formula

Be A a formula with at most one variable x of the language \mathcal{L}^{10}, $A^{\prime}=a, B=A^{a / x}$ and $B^{\prime}=b$.
Let us assume first that $\Gamma_{0} \vdash B$. In this case, Σ derives the words $\mathbf{F} A, B \mathbf{S} A \mathbf{S} a \mathbf{S} x, B$.
Therefore by Lemma 2., the following atomic formulas are theorems of CC: $D(\sigma)\left(\mathbf{F}^{\prime} a\right), D(\sigma)\left(b \mathbf{S}^{\prime} a \mathbf{S}^{\prime} a^{\prime} \mathbf{S}^{\prime} x^{\prime}\right), D(\sigma)(b)$.

The diagonal formula

Be A a formula with at most one variable x of the language \mathcal{L}^{10}, $A^{\prime}=a, B=A^{a / x}$ and $B^{\prime}=b$.
Let us assume first that $\Gamma_{0} \vdash B$. In this case, Σ derives the words $\mathbf{F} A, B \mathbf{S} A \mathbf{S} a \mathbf{S} x, B$.
Therefore by Lemma 2., the following atomic formulas are theorems of $\mathbf{C C}: D(\sigma)\left(\mathbf{F}^{\prime} a\right), D(\sigma)\left(b \mathbf{S}^{\prime} a \mathbf{S}^{\prime} a^{\prime} \mathbf{S}^{\prime} x^{\prime}\right), D(\sigma)(b)$.
Let us abbreviate their conjunction by $\operatorname{Diag}_{\sigma}(a, b)$. If b was a theorem in CC, then this diagonal formula is a theorem, too.

The diagonal formula

Be A a formula with at most one variable x of the language \mathcal{L}^{10}, $A^{\prime}=a, B=A^{a / x}$ and $B^{\prime}=b$.
Let us assume first that $\Gamma_{0} \vdash B$. In this case, Σ derives the words $\mathbf{F} A, B \mathbf{S} A \mathbf{S} a \mathbf{S} x, B$.
Therefore by Lemma 2., the following atomic formulas are theorems of CC: $D(\sigma)\left(\mathbf{F}^{\prime} a\right), D(\sigma)\left(b \mathbf{S}^{\prime} a \mathbf{S}^{\prime} a^{\prime} \mathbf{S}^{\prime} x^{\prime}\right), D(\sigma)(b)$. Let us abbreviate their conjunction by $\operatorname{Diag}_{\sigma}(a, b)$. If b was a theorem in CC, then this diagonal formula is a theorem, too. Let us now assume that $\operatorname{Diag}_{\sigma}(a, b)$ is a theorem. Then each conjunct is a theorem, too, so they are true according our truth definition. The third conjunct says that the calculus with the code σ derives the string with the code b, i.e., B is a theorem of CC.

The diagonal formula

Be A a formula with at most one variable x of the language \mathcal{L}^{10}, $A^{\prime}=a, B=A^{a / x}$ and $B^{\prime}=b$.
Let us assume first that $\Gamma_{0} \vdash B$. In this case, Σ derives the words $\mathbf{F} A, B \mathbf{S} A \mathbf{S} a \mathbf{S} x, B$.
Therefore by Lemma 2., the following atomic formulas are theorems of CC: $D(\sigma)\left(\mathbf{F}^{\prime} a\right), D(\sigma)\left(b \mathbf{S}^{\prime} a \mathbf{S}^{\prime} a^{\prime} \mathbf{S}^{\prime} x^{\prime}\right), D(\sigma)(b)$. Let us abbreviate their conjunction by $\operatorname{Diag}_{\sigma}(a, b)$. If b was a theorem in CC, then this diagonal formula is a theorem, too. Let us now assume that $\operatorname{Diag}_{\sigma}(a, b)$ is a theorem. Then each conjunct is a theorem, too, so they are true according our truth definition. The third conjunct says that the calculus with the code σ derives the string with the code b, i.e., B is a theorem of CC.

Now we have proven
Lemma 3. B is a theorem of CC iff $\operatorname{Diag}_{\sigma}(a, b)$ is a theorem.

The Gödel sentence and its unprovability

The Gödel sentence and its unprovability

Be A_{0} the following formula with the code a_{0} :

$$
\forall \mathfrak{x}_{1} \neg \operatorname{Diag}_{\sigma}\left(\mathfrak{x}, \mathfrak{x}_{1}\right) .
$$

The Gödel sentence and its unprovability

Be A_{0} the following formula with the code a_{0} :

$$
\forall \mathfrak{x}_{1} \neg \operatorname{Diag}_{\sigma}\left(\mathfrak{x}, \mathfrak{x}_{1}\right) .
$$

Let us diagonalize it and call the diagonalized formula G with the code g :

$$
G=\forall \mathfrak{x}_{1} \neg \operatorname{Diag}_{\sigma}\left(a_{0}, \mathfrak{x}_{1}\right) .
$$

The Gödel sentence and its unprovability

Be A_{0} the following formula with the code a_{0} :

$$
\forall \mathfrak{x}_{1} \neg \operatorname{Diag}_{\sigma}\left(\mathfrak{x}, \mathfrak{x}_{1}\right) .
$$

Let us diagonalize it and call the diagonalized formula G with the code g :

$$
G=\forall \mathfrak{x}_{1} \neg \operatorname{Diag}_{\sigma}\left(a_{0}, \mathfrak{x}_{1}\right) .
$$

According to Lemma 3., G is a theorem of $\mathbf{C C}$ iff $\operatorname{Diag}_{\sigma}\left(a_{0}, g\right)$ is a theorem.

The Gödel sentence and its unprovability

Be A_{0} the following formula with the code a_{0} :

$$
\forall \mathfrak{x}_{1} \neg \operatorname{Diag}_{\sigma}\left(\mathfrak{x}, \mathfrak{x}_{1}\right) .
$$

Let us diagonalize it and call the diagonalized formula G with the code g :

$$
G=\forall \mathfrak{x}_{1} \neg \operatorname{Diag}_{\sigma}\left(a_{0}, \mathfrak{x}_{1}\right)
$$

According to Lemma 3., G is a theorem of $\mathbf{C C}$ iff $\operatorname{Diag}_{\sigma}\left(a_{0}, g\right)$ is a theorem.
But from G follows $\neg \operatorname{Diag}_{\sigma}\left(a_{0}, g\right)$. Therefore, if G is a theorem, then CC is inconsistent. Hence, G is not a theorem.

The truth of the Gödel sentence

The truth of the Gödel sentence

Suppose that G is false. Then there is a b_{0} such that the closed atomic formula $\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ is true and hence provable.

The truth of the Gödel sentence

Suppose that G is false. Then there is a b_{0} such that the closed atomic formula $\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ is true and hence provable.
Therefore the conjuncts
$D(\sigma)\left(\mathbf{F}^{\prime} a_{0}\right), D(\sigma)\left(b_{0} \mathbf{S}^{\prime} a_{0} \mathbf{S}^{\prime}\left[a_{0}\right]^{\prime} \mathbf{S}^{\prime} x^{\prime}\right), D(\sigma)\left(b_{0}\right)$ are all true.

Suppose that G is false. Then there is a b_{0} such that the closed atomic formula $\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ is true and hence provable.
Therefore the conjuncts
$D(\sigma)\left(\mathbf{F}^{\prime} a_{0}\right), D(\sigma)\left(b_{0} \mathbf{S}^{\prime} a_{0} \mathbf{S}^{\prime}\left[a_{0}\right]^{\prime} \mathbf{S}^{\prime} x^{\prime}\right), D(\sigma)\left(b_{0}\right)$ are all true.
From the second conjunct follows that b_{0} cannot be different from g because the result of substituting the code a_{0} into the formula with the code a_{0} is the formula with the code g.

Suppose that G is false. Then there is a b_{0} such that the closed atomic formula $\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ is true and hence provable.
Therefore the conjuncts
$D(\sigma)\left(\mathbf{F}^{\prime} a_{0}\right), D(\sigma)\left(b_{0} \mathbf{S}^{\prime} a_{0} \mathbf{S}^{\prime}\left[a_{0}\right]^{\prime} \mathbf{S}^{\prime} x^{\prime}\right), D(\sigma)\left(b_{0}\right)$ are all true.
From the second conjunct follows that b_{0} cannot be different from g because the result of substituting the code a_{0} into the formula with the code a_{0} is the formula with the code g.
Therefore, $D(\sigma)(g)$ is true. But it means that the formula with the code g-i.e., G itself - is derivable in the calculus σ.

Suppose that G is false. Then there is a b_{0} such that the closed atomic formula $\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ is true and hence provable.
Therefore the conjuncts $D(\sigma)\left(\mathbf{F}^{\prime} a_{0}\right), D(\sigma)\left(b_{0} \mathbf{S}^{\prime} a_{0} \mathbf{S}^{\prime}\left[a_{0}\right]^{\prime} \mathbf{S}^{\prime} x^{\prime}\right), D(\sigma)\left(b_{0}\right)$ are all true.
From the second conjunct follows that b_{0} cannot be different from g because the result of substituting the code a_{0} into the formula with the code a_{0} is the formula with the code g.
Therefore, $D(\sigma)(g)$ is true. But it means that the formula with the code g-i.e., G itself - is derivable in the calculus σ.
To sum up: G is not a theorem, but if it were false, then it would be provable. Therefore, it is a true but unprovable sentence.

Generalization

Generalization

Theorem: Be T a first-order theory such that
i. all the theorems of $\mathbf{C C}$ are provable in T;
ii. the class of the theorems of T is definable by some canonical calculus K;
iii. no false formula of $\mathbf{C C}$ is provable in T.

Then T is incomplete. There is a sentence in the language of T which is true but not provable.

Generalization

Theorem: Be T a first-order theory such that
i. all the theorems of $\mathbf{C C}$ are provable in T;
ii. the class of the theorems of T is definable by some canonical calculus K;
iii. no false formula of $\mathbf{C C}$ is provable in T.

Then T is incomplete. There is a sentence in the language of T which is true but not provable.
Be $K^{\prime}=k$. If K derives a string f, then $D(k)\left(f^{\prime}\right)$ is provable in T (because it is provable in CC). So we have an analogue of Lemma 2. Then we can introduce $\operatorname{Diag}_{k}(a / x, b)$ exactly as we have introduced Diag_{σ}. We can prove Lemma 3. for theorems of T instead of CC, and produce a Gödel sentence for T.

Cons $_{\sigma}$ and Step 1. to its unprovability

Cons $_{\sigma}$ and Step 1. to its unprovability

A definition:
$T h_{\sigma}(a)={ }_{d f} D(\sigma)\left(\mathbf{F}^{\prime} a\right) \wedge D(\sigma)(a)$

Cons $_{\sigma}$ and Step 1. to its unprovability

A definition:
$T h_{\sigma}(a)={ }_{d f} D(\sigma)\left(\mathbf{F}^{\prime} a\right) \wedge D(\sigma)(a)$
The \mathcal{L}^{01}-sentence expressing the consistency of CC:
Cons $_{\sigma}=\exists \mathfrak{x}\left(D(\sigma)\left(\mathbf{F}^{\prime} \mathfrak{x}\right) \wedge \neg D(\sigma)(\mathfrak{x})\right)$

Cons $_{\sigma}$ and Step 1. to its unprovability

A definition:
$T h_{\sigma}(a)={ }_{d f} D(\sigma)\left(\mathbf{F}^{\prime} a\right) \wedge D(\sigma)(a)$
The \mathcal{L}^{01}-sentence expressing the consistency of CC:
Cons $_{\sigma}=\exists \mathfrak{x}\left(D(\sigma)\left(\mathbf{F}^{\prime} \mathfrak{x}\right) \wedge \neg D(\sigma)(\mathfrak{x})\right)$
It was argued (in the metalanguage) that if the Gödel-sentence $B_{0}(=G)$ is false, then it is a theorem of CC. This claim can be expressed in the language of $\mathbf{C C}$ as $\neg B_{0} \supset T h\left(b_{0}\right)$.

Cons $_{\sigma}$ and Step 1. to its unprovability

A definition:
$T h_{\sigma}(a)={ }_{d f} D(\sigma)\left(\mathbf{F}^{\prime} a\right) \wedge D(\sigma)(a)$
The \mathcal{L}^{01}-sentence expressing the consistency of CC:
Cons $_{\sigma}=\exists \mathfrak{x}\left(D(\sigma)\left(\mathbf{F}^{\prime} \mathfrak{x}\right) \wedge \neg D(\sigma)(\mathfrak{x})\right)$
It was argued (in the metalanguage) that if the Gödel-sentence $B_{0}(=G)$ is false, then it is a theorem of CC. This claim can be expressed in the language of $\mathbf{C C}$ as $\neg B_{0} \supset T h\left(b_{0}\right)$.
But the argument for it can be reproduced within $\mathbf{C C}$, too, so (Step 1.) $\neg B_{0} \supset T h\left(b_{0}\right)$ is provable.
The axiom $S U D$ (Substitution Uniquely Determined) is needed to show it:
$\forall \mathfrak{x}_{1} \forall \mathfrak{x}_{2} \forall \mathfrak{x}_{3} \forall \mathfrak{x}_{4}$

$$
\left(D(\sigma)\left(\mathfrak{x}_{3} \mathbf{S}^{\prime} \mathfrak{x}_{2} \mathbf{S}^{\prime} \mathfrak{x}_{1} \mathbf{S}^{\prime} \mathfrak{x}\right) \supset D(\sigma)\left(\mathfrak{x}_{4} \mathbf{S}^{\prime} \mathfrak{x}_{2} \mathbf{S}^{\prime} \mathfrak{x}_{1} \mathbf{S}^{\prime} \mathfrak{x}\right) \supset \mathfrak{x}_{3}=\mathfrak{x}_{4}\right)
$$

Steps 2. and 3.

$\operatorname{Be} C_{0}=\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ with the code c_{0}.

Steps 2. and 3.

Be $C_{0}=\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ with the code c_{0}.
We know that $\Gamma_{0} \vdash B_{0}$ iff $\Gamma_{0} \vdash C_{0}$. This biconditional can be proven within CC again, i.e. $\Gamma_{0} \vdash B_{0} \leftrightarrow C_{0}$.

Steps 2. and 3.

Be $C_{0}=\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ with the code c_{0}.
We know that $\Gamma_{0} \vdash B_{0}$ iff $\Gamma_{0} \vdash C_{0}$. This biconditional can be proven within $\mathbf{C C}$ again, i.e. $\Gamma_{0} \vdash B_{0} \leftrightarrow C_{0}$.
By the definition of $T h_{\sigma}$, it follows that $\Gamma_{0} \vdash T h\left(b_{0}\right) \supset T h\left(c_{0}\right)$.

Steps 2. and 3.

Be $C_{0}=\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ with the code c_{0}.
We know that $\Gamma_{0} \vdash B_{0}$ iff $\Gamma_{0} \vdash C_{0}$. This biconditional can be proven within $\mathbf{C C}$ again, i.e. $\Gamma_{0} \vdash B_{0} \leftrightarrow C_{0}$.
By the definition of $T h_{\sigma}$, it follows that $\Gamma_{0} \vdash T h\left(b_{0}\right) \supset T h\left(c_{0}\right)$.
Using the result of Step 1., we get
(Step 2.) $\Gamma_{0} \vdash \neg B_{0} \supset T h\left(c_{0}\right)$

Be $C_{0}=\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ with the code c_{0}.
We know that $\Gamma_{0} \vdash B_{0}$ iff $\Gamma_{0} \vdash C_{0}$. This biconditional can be proven within $\mathbf{C C}$ again, i.e. $\Gamma_{0} \vdash B_{0} \leftrightarrow C_{0}$.
By the definition of $T h_{\sigma}$, it follows that $\Gamma_{0} \vdash T h\left(b_{0}\right) \supset T h\left(c_{0}\right)$.
Using the result of Step 1., we get
(Step 2.) $\Gamma_{0} \vdash \neg B_{0} \supset T h\left(c_{0}\right)$
We know that if $\Gamma_{0} \vdash C_{0}$, then $\Gamma_{0} \vdash B_{0}$, and if $\Gamma_{0} \vdash B_{0}$, then
$\Gamma_{0} \vdash \neg C_{0}$.

Be $C_{0}=\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ with the code c_{0}.
We know that $\Gamma_{0} \vdash B_{0}$ iff $\Gamma_{0} \vdash C_{0}$. This biconditional can be proven within $\mathbf{C C}$ again, i.e. $\Gamma_{0} \vdash B_{0} \leftrightarrow C_{0}$.
By the definition of $T h_{\sigma}$, it follows that $\Gamma_{0} \vdash T h\left(b_{0}\right) \supset T h\left(c_{0}\right)$.
Using the result of Step 1., we get
(Step 2.) $\Gamma_{0} \vdash \neg B_{0} \supset T h\left(c_{0}\right)$
We know that if $\Gamma_{0} \vdash C_{0}$, then $\Gamma_{0} \vdash B_{0}$, and if $\Gamma_{0} \vdash B_{0}$, then
$\Gamma_{0} \vdash \neg C_{0}$.
It follows that $\Gamma \vdash T h\left(c_{0}\right) \supset T h\left(\neg^{\prime} c_{0}\right)$.
$\operatorname{Be} C_{0}=\operatorname{Diag}_{\sigma}\left(a_{0}, b_{0}\right)$ with the code c_{0}.
We know that $\Gamma_{0} \vdash B_{0}$ iff $\Gamma_{0} \vdash C_{0}$. This biconditional can be proven within CC again, i.e. $\Gamma_{0} \vdash B_{0} \leftrightarrow C_{0}$.
By the definition of $T h_{\sigma}$, it follows that $\Gamma_{0} \vdash T h\left(b_{0}\right) \supset T h\left(c_{0}\right)$.
Using the result of Step 1., we get
(Step 2.) $\Gamma_{0} \vdash \neg B_{0} \supset T h\left(c_{0}\right)$
We know that if $\Gamma_{0} \vdash C_{0}$, then $\Gamma_{0} \vdash B_{0}$, and if $\Gamma_{0} \vdash B_{0}$, then
$\Gamma_{0} \vdash \neg C_{0}$.
It follows that $\Gamma \vdash T h\left(c_{0}\right) \supset T h\left(\neg^{\prime} c_{0}\right)$.
Therefore, using Step 2. and propositional logic:
Step 3. $\Gamma_{0} \vdash \neg B_{0} \supset\left(T h\left(c_{0}\right) \wedge T h\left(\neg^{\prime} c_{0}\right)\right)$

Step 4. and the finish of the proof

Step 4. and the finish of the proof

$T h\left(c_{0}\right) \wedge T h\left(\neg^{\prime} c_{0}\right)$ is the encoded form of a contradiction. For any sentences $A, B,(A \wedge \neg A) \supset B$ is a provable formula of propositional logic and it can be used for this encoded form, too. Therefore,
Step 4. $\Gamma_{0} \vdash\left(T h\left(c_{0}\right) \wedge T h\left(\neg^{\prime} c_{0}\right)\right) \supset \neg$ Cons $_{\sigma}$.

Step 4. and the finish of the proof

$T h\left(c_{0}\right) \wedge T h\left(\neg^{\prime} c_{0}\right)$ is the encoded form of a contradiction. For any sentences $A, B,(A \wedge \neg A) \supset B$ is a provable formula of propositional logic and it can be used for this encoded form, too. Therefore,
Step 4. $\Gamma_{0} \vdash\left(T h\left(c_{0}\right) \wedge T h\left(\neg^{\prime} c_{0}\right)\right) \supset \neg$ Cons $_{\sigma}$.
From Step 3. and Step 4. it follows that
$\Gamma_{0} \vdash \neg B_{0} \supset \neg$ Cons $_{\sigma}$.
By propositional logic,
$\Gamma_{0} \vdash$ Cons $_{\sigma} \supset B_{0}$.

Step 4. and the finish of the proof

$T h\left(c_{0}\right) \wedge T h\left(\neg^{\prime} c_{0}\right)$ is the encoded form of a contradiction. For any sentences $A, B,(A \wedge \neg A) \supset B$ is a provable formula of propositional logic and it can be used for this encoded form, too. Therefore,
Step 4. $\Gamma_{0} \vdash\left(T h\left(c_{0}\right) \wedge T h\left(\neg^{\prime} c_{0}\right)\right) \supset \neg$ Cons $_{\sigma}$.
From Step 3. and Step 4. it follows that
$\Gamma_{0} \vdash \neg B_{0} \supset \neg$ Cons $_{\sigma}$.
By propositional logic,
$\Gamma_{0} \vdash$ Cons $_{\sigma} \supset B_{0}$.
Therefore, if Cons $_{\sigma}$ were provable, then B_{0}, the Gödel sentence would be provable, too. But from the first incompleteness theorem we know that the Gödel sentence is not provable, and therefore Cons $_{\sigma}$ can't be provable, either. Q.e.d.

