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Diagonalization in CC (preparatory steps)

Lemma 1.: the true closed atomic formulas of L1∗ resp. L10 are

all provable in CC∗ resp. in CC.

The theorems of CC∗ can be de�ned by the calculus Σ∗ and the

theorems of CC by Σ. They contain some auxiliary letters to

describe the language of CC∗ resp. of CC, e.g. F for formula

and S for substitution. (Boldface is used to distinguish auxiliary

letters of these calculi from the auxiliary letters of the

hypercalculi.)

In constructing the hypercalculi H2 and H3 we have used an

encoding procedure. Let us denote the code of a string f by [f ]′

(the square brackets can be omitted if f consists of a single

letter or a metavariable). Be [Σ∗]′ = σ∗and Σ′ = σ.

Lemma 2.: If a string f is derivable in Σ, then σDf ′ is
derivable in H2. Therefore, D(σ)(f ′) is a true atomic formula of

L10. According to Lemma 1., it is a theorem of CC.
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The diagonal formula

Be A a formula with at most one variable x of the language L10,

A′ = a, B = Aa/x and B′ = b.

Let us assume �rst that Γ0 ⊢ B. In this case, Σ derives the

words FA, BSASaSx, B.

Therefore by Lemma 2., the following atomic formulas are

theorems of CC: D(σ)(F′a), D(σ)(bS′aS′a′S′x′), D(σ)(b).

Let us abbreviate their conjunction by Diagσ(a, b). If b was a
theorem in CC, then this diagonal formula is a theorem, too.

Let us now assume that Diagσ(a, b) is a theorem. Then each

conjunct is a theorem, too, so they are true according our truth

de�nition. The third conjunct says that the calculus with the

code σ derives the string with the code b, i.e., B is a theorem of

CC.

Now we have proven

Lemma 3. B is a theorem of CC i� Diagσ(a, b) is a theorem.
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The Gödel sentence and its unprovability

Be A0 the following formula with the code a0:

∀x1¬Diagσ(x, x1).

Let us diagonalize it and call the diagonalized formula G with

the code g:
G = ∀x1¬Diagσ(a0, x1).

According to Lemma 3., G is a theorem of CC i� Diagσ(a0, g)
is a theorem.

But from G follows ¬Diagσ(a0, g). Therefore, if G is a theorem,

then CC is inconsistent. Hence, G is not a theorem.
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The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed

atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts

D(σ)(F′a0), D(σ)(b0S
′a0S

′[a0]
′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent

from g because the result of substituting the code a0 into the

formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with

the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would

be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 19th May



The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed

atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts

D(σ)(F′a0), D(σ)(b0S
′a0S

′[a0]
′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent

from g because the result of substituting the code a0 into the

formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with

the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would

be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 19th May



The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed

atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts

D(σ)(F′a0), D(σ)(b0S
′a0S

′[a0]
′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent

from g because the result of substituting the code a0 into the

formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with

the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would

be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 19th May



The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed

atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts

D(σ)(F′a0), D(σ)(b0S
′a0S

′[a0]
′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent

from g because the result of substituting the code a0 into the

formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with

the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would

be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 19th May



The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed

atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts

D(σ)(F′a0), D(σ)(b0S
′a0S

′[a0]
′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent

from g because the result of substituting the code a0 into the

formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with

the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would

be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 19th May



The truth of the Gödel sentence

Suppose that G is false. Then there is a b0 such that the closed

atomic formula Diagσ(a0, b0) is true and hence provable.

Therefore the conjuncts

D(σ)(F′a0), D(σ)(b0S
′a0S

′[a0]
′S′x′), D(σ)(b0) are all true.

From the second conjunct follows that b0 cannot be di�erent

from g because the result of substituting the code a0 into the

formula with the code a0 is the formula with the code g.

Therefore, D(σ)(g) is true. But it means that the formula with

the code g � i.e., G itself � is derivable in the calculus σ.

To sum up: G is not a theorem, but if it were false, then it would

be provable. Therefore, it is a true but unprovable sentence.

András Máté metalogic 19th May



Generalization

Theorem: Be T a �rst-order theory such that

i. all the theorems of CC are provable in T ;

ii. the class of the theorems of T is de�nable by some

canonical calculus K;

iii. no false formula of CC is provable in T .

Then T is incomplete. There is a sentence in the language of T
which is true but not provable.

Be K ′ = k. If K derives a string f , then D(k)(f ′) is provable in
T (because it is provable in CC). So we have an analogue of

Lemma 2. Then we can introduce Diagk(a/x, b) exactly as we

have introduced Diagσ. We can prove Lemma 3. for theorems of

T instead of CC, and produce a Gödel sentence for T .
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Consσ and Step 1. to its unprovability

A de�nition:

Thσ(a) =df D(σ)(F′a) ∧D(σ)(a)

The L01-sentence expressing the consistency of CC:

Consσ = ∃x(D(σ)(F′x) ∧ ¬D(σ)(x))

It was argued (in the metalanguage) that if the Gödel-sentence

B0(= G) is false, then it is a theorem of CC. This claim can be

expressed in the language of CC as ¬B0 ⊃ Th(b0).

But the argument for it can be reproduced within CC, too, so

(Step 1.) ¬B0 ⊃ Th(b0) is provable.
The axiom SUD (Substitution Uniquely Determined) is needed

to show it:

∀x1∀x2∀x3∀x4
(D(σ)(x3S

′x2S
′x1S

′x) ⊃ D(σ)(x4S
′x2S

′x1S
′x) ⊃ x3 = x4)

András Máté metalogic 19th May



Consσ and Step 1. to its unprovability

A de�nition:

Thσ(a) =df D(σ)(F′a) ∧D(σ)(a)

The L01-sentence expressing the consistency of CC:

Consσ = ∃x(D(σ)(F′x) ∧ ¬D(σ)(x))

It was argued (in the metalanguage) that if the Gödel-sentence

B0(= G) is false, then it is a theorem of CC. This claim can be

expressed in the language of CC as ¬B0 ⊃ Th(b0).

But the argument for it can be reproduced within CC, too, so

(Step 1.) ¬B0 ⊃ Th(b0) is provable.
The axiom SUD (Substitution Uniquely Determined) is needed

to show it:

∀x1∀x2∀x3∀x4
(D(σ)(x3S

′x2S
′x1S

′x) ⊃ D(σ)(x4S
′x2S

′x1S
′x) ⊃ x3 = x4)

András Máté metalogic 19th May



Consσ and Step 1. to its unprovability

A de�nition:

Thσ(a) =df D(σ)(F′a) ∧D(σ)(a)

The L01-sentence expressing the consistency of CC:

Consσ = ∃x(D(σ)(F′x) ∧ ¬D(σ)(x))

It was argued (in the metalanguage) that if the Gödel-sentence

B0(= G) is false, then it is a theorem of CC. This claim can be

expressed in the language of CC as ¬B0 ⊃ Th(b0).

But the argument for it can be reproduced within CC, too, so

(Step 1.) ¬B0 ⊃ Th(b0) is provable.
The axiom SUD (Substitution Uniquely Determined) is needed

to show it:

∀x1∀x2∀x3∀x4
(D(σ)(x3S

′x2S
′x1S

′x) ⊃ D(σ)(x4S
′x2S

′x1S
′x) ⊃ x3 = x4)

András Máté metalogic 19th May



Consσ and Step 1. to its unprovability

A de�nition:

Thσ(a) =df D(σ)(F′a) ∧D(σ)(a)

The L01-sentence expressing the consistency of CC:

Consσ = ∃x(D(σ)(F′x) ∧ ¬D(σ)(x))

It was argued (in the metalanguage) that if the Gödel-sentence

B0(= G) is false, then it is a theorem of CC. This claim can be

expressed in the language of CC as ¬B0 ⊃ Th(b0).

But the argument for it can be reproduced within CC, too, so

(Step 1.) ¬B0 ⊃ Th(b0) is provable.
The axiom SUD (Substitution Uniquely Determined) is needed

to show it:

∀x1∀x2∀x3∀x4
(D(σ)(x3S

′x2S
′x1S

′x) ⊃ D(σ)(x4S
′x2S

′x1S
′x) ⊃ x3 = x4)

András Máté metalogic 19th May



Consσ and Step 1. to its unprovability

A de�nition:

Thσ(a) =df D(σ)(F′a) ∧D(σ)(a)

The L01-sentence expressing the consistency of CC:

Consσ = ∃x(D(σ)(F′x) ∧ ¬D(σ)(x))

It was argued (in the metalanguage) that if the Gödel-sentence

B0(= G) is false, then it is a theorem of CC. This claim can be

expressed in the language of CC as ¬B0 ⊃ Th(b0).

But the argument for it can be reproduced within CC, too, so

(Step 1.) ¬B0 ⊃ Th(b0) is provable.
The axiom SUD (Substitution Uniquely Determined) is needed

to show it:

∀x1∀x2∀x3∀x4
(D(σ)(x3S

′x2S
′x1S

′x) ⊃ D(σ)(x4S
′x2S

′x1S
′x) ⊃ x3 = x4)

András Máté metalogic 19th May



Steps 2. and 3.

Be C0 = Diagσ(a0, b0) with the code c0.

We know that Γ0 ⊢ B0 i� Γ0 ⊢ C0. This biconditional can be

proven within CC again, i.e. Γ0 ⊢ B0 ↔ C0.

By the de�nition of Thσ, it follows that Γ0 ⊢ Th(b0) ⊃ Th(c0).

Using the result of Step 1., we get

(Step 2.) Γ0 ⊢ ¬B0 ⊃ Th(c0)

We know that if Γ0 ⊢ C0, then Γ0 ⊢ B0, and if Γ0 ⊢ B0, then

Γ0 ⊢ ¬C0.

It follows that Γ ⊢ Th(c0) ⊃ Th(¬′c0).

Therefore, using Step 2. and propositional logic:

Step 3. Γ0 ⊢ ¬B0 ⊃ (Th(c0) ∧ Th(¬′c0))
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Step 4. and the �nish of the proof

Th(c0) ∧ Th(¬′c0) is the encoded form of a contradiction. For

any sentences A, B, (A ∧ ¬A) ⊃ B is a provable formula of

propositional logic and it can be used for this encoded form,

too. Therefore,

Step 4. Γ0 ⊢ (Th(c0) ∧ Th(¬′c0)) ⊃ ¬Consσ.

From Step 3. and Step 4. it follows that

Γ0 ⊢ ¬B0 ⊃ ¬Consσ.
By propositional logic,

Γ0 ⊢ Consσ ⊃ B0.

Therefore, if Consσ were provable, then B0, the Gödel sentence

would be provable, too. But from the �rst incompleteness

theorem we know that the Gödel sentence is not provable, and

therefore Consσ can't be provable, either. Q.e.d.
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