The (negation) incompleteness of the first-order theory of canonical calculi and the unprovability of consistency

András Máté

19.05.2023

András Máté metalogic 19th May

András Máté metalogic 19th May

Lemma 1.: the true *closed atomic formulas* of \mathcal{L}^{1*} resp. \mathcal{L}^{10} are all provable in **CC**^{*} resp. in **CC**.

Lemma 1.: the true *closed atomic formulas* of \mathcal{L}^{1*} resp. \mathcal{L}^{10} are all provable in \mathbf{CC}^* resp. in \mathbf{CC} .

The theorems of \mathbf{CC}^* can be defined by the calculus Σ^* and the theorems of \mathbf{CC} by Σ . They contain some auxiliary letters to describe the language of \mathbf{CC}^* resp. of \mathbf{CC} , e.g. \mathbf{F} for formula and \mathbf{S} for substitution. (Boldface is used to distinguish auxiliary letters of these calculi from the auxiliary letters of the hypercalculi.)

Lemma 1.: the true *closed atomic formulas* of \mathcal{L}^{1*} resp. \mathcal{L}^{10} are all provable in \mathbb{CC}^* resp. in \mathbb{CC} .

The theorems of \mathbf{CC}^* can be defined by the calculus Σ^* and the theorems of \mathbf{CC} by Σ . They contain some auxiliary letters to describe the language of \mathbf{CC}^* resp. of \mathbf{CC} , e.g. \mathbf{F} for formula and \mathbf{S} for substitution. (Boldface is used to distinguish auxiliary letters of these calculi from the auxiliary letters of the hypercalculi.)

In constructing the hypercalculi \mathbf{H}_2 and \mathbf{H}_3 we have used an encoding procedure. Let us denote the code of a string f by [f]' (the square brackets can be omitted if f consists of a single letter or a metavariable). Be $[\Sigma^*]' = \sigma^*$ and $\Sigma' = \sigma$.

- 4 目 ト - 4 日 ト - 4

Lemma 1.: the true *closed atomic formulas* of \mathcal{L}^{1*} resp. \mathcal{L}^{10} are all provable in \mathbf{CC}^* resp. in \mathbf{CC} .

The theorems of \mathbf{CC}^* can be defined by the calculus Σ^* and the theorems of \mathbf{CC} by Σ . They contain some auxiliary letters to describe the language of \mathbf{CC}^* resp. of \mathbf{CC} , e.g. \mathbf{F} for formula and \mathbf{S} for substitution. (Boldface is used to distinguish auxiliary letters of these calculi from the auxiliary letters of the hypercalculi.)

In constructing the hypercalculi \mathbf{H}_2 and \mathbf{H}_3 we have used an encoding procedure. Let us denote the code of a string f by [f]' (the square brackets can be omitted if f consists of a single letter or a metavariable). Be $[\Sigma^*]' = \sigma^*$ and $\Sigma' = \sigma$.

Lemma 2.: If a string f is derivable in Σ , then $\sigma Df'$ is derivable in \mathbf{H}_2 . Therefore, $D(\sigma)(f')$ is a true atomic formula of \mathcal{L}^{10} . According to Lemma 1., it is a theorem of **CC**.

(人間) トイヨト イヨト

András Máté 👘 metalogic 19th May

★課 ▶ ★ 臣 ▶ ★ 臣

Be A a formula with at most one variable x of the language \mathcal{L}^{10} , A' = a, $B = A^{a/x}$ and B' = b.

Be A a formula with at most one variable x of the language \mathcal{L}^{10} , A' = a, $B = A^{a/x}$ and B' = b.

Let us assume first that $\Gamma_0 \vdash B$. In this case, Σ derives the words $\mathbf{F}A$, $B\mathbf{S}A\mathbf{S}a\mathbf{S}x$, B.

Be A a formula with at most one variable x of the language \mathcal{L}^{10} , A' = a, $B = A^{a/x}$ and B' = b.

Let us assume first that $\Gamma_0 \vdash B$. In this case, Σ derives the words $\mathbf{F}A$, $B\mathbf{S}A\mathbf{S}a\mathbf{S}x$, B.

Therefore by Lemma 2., the following atomic formulas are theorems of **CC**: $D(\sigma)(\mathbf{F}'a)$, $D(\sigma)(b\mathbf{S}'a\mathbf{S}'a'\mathbf{S}'x')$, $D(\sigma)(b)$.

Be A a formula with at most one variable x of the language \mathcal{L}^{10} , A' = a, $B = A^{a/x}$ and B' = b.

Let us assume first that $\Gamma_0 \vdash B$. In this case, Σ derives the words $\mathbf{F}A$, $B\mathbf{S}A\mathbf{S}a\mathbf{S}x$, B.

Therefore by Lemma 2., the following atomic formulas are theorems of **CC**: $D(\sigma)(\mathbf{F}'a)$, $D(\sigma)(b\mathbf{S}'a\mathbf{S}'a'\mathbf{S}'x')$, $D(\sigma)(b)$.

Let us abbreviate their conjunction by $Diag_{\sigma}(a, b)$. If b was a theorem in **CC**, then this diagonal formula is a theorem, too.

Be A a formula with at most one variable x of the language \mathcal{L}^{10} , A' = a, $B = A^{a/x}$ and B' = b.

Let us assume first that $\Gamma_0 \vdash B$. In this case, Σ derives the words $\mathbf{F}A$, $B\mathbf{S}A\mathbf{S}a\mathbf{S}x$, B.

Therefore by Lemma 2., the following atomic formulas are theorems of \mathbf{CC} : $D(\sigma)(\mathbf{F}'a)$, $D(\sigma)(b\mathbf{S}'a\mathbf{S}'a'\mathbf{S}'x')$, $D(\sigma)(b)$. Let us abbreviate their conjunction by $Diag_{\sigma}(a, b)$. If b was a theorem in \mathbf{CC} , then this diagonal formula is a theorem, too. Let us now assume that $Diag_{\sigma}(a, b)$ is a theorem. Then each conjunct is a theorem, too, so they are true according our truth definition. The third conjunct says that the calculus with the code σ derives the string with the code b, i.e., B is a theorem of \mathbf{CC} .

A (1) > A (2) > A

Be A a formula with at most one variable x of the language \mathcal{L}^{10} , A' = a, $B = A^{a/x}$ and B' = b.

Let us assume first that $\Gamma_0 \vdash B$. In this case, Σ derives the words $\mathbf{F}A$, $B\mathbf{S}A\mathbf{S}a\mathbf{S}x$, B.

Therefore by Lemma 2., the following atomic formulas are theorems of **CC**: $D(\sigma)(\mathbf{F}'a)$, $D(\sigma)(b\mathbf{S}'a\mathbf{S}'a'\mathbf{S}'x')$, $D(\sigma)(b)$. Let us abbreviate their conjunction by $Diag_{\sigma}(a, b)$. If b was a

theorem in \mathbf{CC} , then this diagonal formula is a theorem, too.

Let us now assume that $Diag_{\sigma}(a, b)$ is a theorem. Then each conjunct is a theorem, too, so they are true according our truth definition. The third conjunct says that the calculus with the code σ derives the string with the code b, i.e., B is a theorem of **CC**.

Now we have proven Lemma 3. *B* is a theorem of **CC** iff $Diag_{\sigma}(a, b)$ is a theorem.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

András Máté metalogic 19th May

• • = • • =

Be A_0 the following formula with the code a_0 :

 $\forall \mathfrak{x}_1 \neg Diag_{\sigma}(\mathfrak{x}, \mathfrak{x}_1).$

F 4 3 F 4 3

Be A_0 the following formula with the code a_0 :

$$\forall \mathfrak{x}_1 \neg Diag_{\sigma}(\mathfrak{x}, \mathfrak{x}_1).$$

Let us diagonalize it and call the diagonalized formula G with the code g:

$$G = \forall \mathfrak{x}_1 \neg Diag_\sigma(a_0, \mathfrak{x}_1).$$

Be A_0 the following formula with the code a_0 :

$$\forall \mathfrak{x}_1 \neg Diag_{\sigma}(\mathfrak{x}, \mathfrak{x}_1).$$

Let us diagonalize it and call the diagonalized formula G with the code g:

$$G = \forall \mathfrak{x}_1 \neg Diag_\sigma(a_0, \mathfrak{x}_1).$$

According to Lemma 3., G is a theorem of **CC** iff $Diag_{\sigma}(a_0, g)$ is a theorem.

Be A_0 the following formula with the code a_0 :

$$\forall \mathfrak{x}_1 \neg Diag_{\sigma}(\mathfrak{x}, \mathfrak{x}_1).$$

Let us diagonalize it and call the diagonalized formula G with the code g:

$$G = \forall \mathfrak{x}_1 \neg Diag_\sigma(a_0, \mathfrak{x}_1).$$

According to Lemma 3., G is a theorem of **CC** iff $Diag_{\sigma}(a_0, g)$ is a theorem.

But from G follows $\neg Diag_{\sigma}(a_0, g)$. Therefore, if G is a theorem, then **CC** is inconsistent. Hence, G is not a theorem.

The truth of the Gödel sentence

András Máté metalogic 19th May

・ロト ・聞ト ・ヨト ・ヨト

Therefore the conjuncts $D(\sigma)(\mathbf{F}'a_0), D(\sigma)(b_0\mathbf{S}'a_0\mathbf{S}'[a_0]'\mathbf{S}'x'), D(\sigma)(b_0)$ are all true.

Therefore the conjuncts $D(\sigma)(\mathbf{F}'a_0), \ D(\sigma)(b_0\mathbf{S}'a_0\mathbf{S}'[a_0]'\mathbf{S}'x'), \ D(\sigma)(b_0)$ are all true. From the second conjunct follows that b_0 cannot be different from g because the result of substituting the code a_0 into the formula with the code a_0 is the formula with the code g.

Therefore the conjuncts

 $D(\sigma)(\mathbf{F}'a_0), \ D(\sigma)(b_0\mathbf{S}'a_0\mathbf{S}'[a_0]'\mathbf{S}'x'), \ D(\sigma)(b_0)$ are all true.

From the second conjunct follows that b_0 cannot be different from g because the result of substituting the code a_0 into the formula with the code a_0 is the formula with the code g.

Therefore, $D(\sigma)(g)$ is true. But it means that the formula with the code g – i.e., G itself – is derivable in the calculus σ .

Therefore the conjuncts

 $D(\sigma)(\mathbf{F}'a_0), \ D(\sigma)(b_0\mathbf{S}'a_0\mathbf{S}'[a_0]'\mathbf{S}'x'), \ D(\sigma)(b_0)$ are all true.

From the second conjunct follows that b_0 cannot be different from g because the result of substituting the code a_0 into the formula with the code a_0 is the formula with the code g.

Therefore, $D(\sigma)(g)$ is true. But it means that the formula with the code g – i.e., G itself – is derivable in the calculus σ .

To sum up: G is not a theorem, but if it were false, then it would be provable. Therefore, it is a true but unprovable sentence.

▲ □ ▶ ▲ □ ▶ ▲

Generalization

András Máté 👘 metalogic 19th May

E

Theorem: Be ${\cal T}$ a first-order theory such that

- i. all the theorems of \mathbf{CC} are provable in T;
- ii. the class of the theorems of T is definable by some canonical calculus K;
- iii. no false formula of \mathbf{CC} is provable in T.

Then T is incomplete. There is a sentence in the language of T which is true but not provable.

Theorem: Be ${\cal T}$ a first-order theory such that

- i. all the theorems of \mathbf{CC} are provable in T;
- ii. the class of the theorems of T is definable by some canonical calculus K;
- iii. no false formula of \mathbf{CC} is provable in T.

Then T is incomplete. There is a sentence in the language of T which is true but not provable.

Be K' = k. If K derives a string f, then D(k)(f') is provable in T (because it is provable in **CC**). So we have an analogue of Lemma 2. Then we can introduce $Diag_k(a/x, b)$ exactly as we have introduced $Diag_{\sigma}$. We can prove Lemma 3. for theorems of T instead of **CC**, and produce a Gödel sentence for T.

・ロト ・聞ト ・ヨト ・ヨト

A definition: $Th_{\sigma}(a) =_{df} D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$

A definition: $Th_{\sigma}(a) =_{df} D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ The \mathcal{L}^{01} -sentence expressing the consistency of **CC**: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \wedge \neg D(\sigma)(\mathfrak{x}))$

・ 同 ト ・ 三 ト ・

A definition: $Th_{\sigma}(a) =_{df} D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ The \mathcal{L}^{01} -sentence expressing the consistency of **CC**: $Cons_{\sigma} = \exists \mathfrak{x}(D(\sigma)(\mathbf{F}'\mathfrak{x}) \wedge \neg D(\sigma)(\mathfrak{x}))$ It was argued (in the metalanguage) that if the Gödel-sente

It was argued (in the metalanguage) that if the Gödel-sentence $B_0(=G)$ is false, then it is a theorem of **CC**. This claim can be expressed in the language of **CC** as $\neg B_0 \supset Th(b_0)$.

A definition: $Th_{\sigma}(a) =_{df} D(\sigma)(\mathbf{F}'a) \wedge D(\sigma)(a)$ The \mathcal{L}^{01} -sentence expressing the consistency of **CC**: $Cons_{\sigma} = \exists \mathfrak{r}(D(\sigma)(\mathbf{F}'\mathfrak{r}) \wedge \neg D(\sigma)(\mathfrak{r}))$

It was argued (in the metalanguage) that if the Gödel-sentence $B_0(=G)$ is false, then it is a theorem of **CC**. This claim can be expressed in the language of **CC** as $\neg B_0 \supset Th(b_0)$.

But the argument for it can be reproduced within **CC**, too, so (Step 1.) $\neg B_0 \supset Th(b_0)$ is provable.

The axiom SUD (Substitution Uniquely Determined) is needed to show it:

 $\forall \mathfrak{x}_1 \forall \mathfrak{x}_2 \forall \mathfrak{x}_3 \forall \mathfrak{x}_4$

 $(D(\sigma)(\mathfrak{x}_3\mathbf{S}'\mathfrak{x}_2\mathbf{S}'\mathfrak{x}_1\mathbf{S}'\mathfrak{x})\supset D(\sigma)(\mathfrak{x}_4\mathbf{S}'\mathfrak{x}_2\mathbf{S}'\mathfrak{x}_1\mathbf{S}'\mathfrak{x})\supset\mathfrak{x}_3=\mathfrak{x}_4)$

伺下 イヨト イヨト

Be $C_0 = Diag_{\sigma}(a_0, b_0)$ with the code c_0 .

A (1) > A (2) > A

By the definition of Th_{σ} , it follows that $\Gamma_0 \vdash Th(b_0) \supset Th(c_0)$.

Be $C_0 = Diag_{\sigma}(a_0, b_0)$ with the code c_0 . We know that $\Gamma_0 \vdash B_0$ iff $\Gamma_0 \vdash C_0$. This biconditional can be proven within **CC** again, i.e. $\Gamma_0 \vdash B_0 \leftrightarrow C_0$. By the definition of Th_{σ} , it follows that $\Gamma_0 \vdash Th(b_0) \supset Th(c_0)$. Using the result of Step 1., we get (Step 2.) $\Gamma_0 \vdash \neg B_0 \supset Th(c_0)$

By the definition of Th_{σ} , it follows that $\Gamma_0 \vdash Th(b_0) \supset Th(c_0)$. Using the result of Step 1., we get (Step 2.) $\Gamma_0 \vdash \neg B_0 \supset Th(c_0)$ We know that if $\Gamma_0 \vdash C_0$, then $\Gamma_0 \vdash B_0$, and if $\Gamma_0 \vdash B_0$, then $\Gamma_0 \vdash \neg C_0$.

By the definition of Th_{σ} , it follows that $\Gamma_0 \vdash Th(b_0) \supset Th(c_0)$.

Using the result of Step 1., we get (Step 2.) $\Gamma_0 \vdash \neg B_0 \supset Th(c_0)$

We know that if $\Gamma_0 \vdash C_0$, then $\Gamma_0 \vdash B_0$, and if $\Gamma_0 \vdash B_0$, then $\Gamma_0 \vdash \neg C_0$.

It follows that $\Gamma \vdash Th(c_0) \supset Th(\neg' c_0)$.

By the definition of Th_{σ} , it follows that $\Gamma_0 \vdash Th(b_0) \supset Th(c_0)$.

Using the result of Step 1., we get $(S_{top}, 2) \to B \to Th(a)$

(Step 2.) $\Gamma_0 \vdash \neg B_0 \supset Th(c_0)$

We know that if $\Gamma_0 \vdash C_0$, then $\Gamma_0 \vdash B_0$, and if $\Gamma_0 \vdash B_0$, then $\Gamma_0 \vdash \neg C_0$.

It follows that $\Gamma \vdash Th(c_0) \supset Th(\neg' c_0)$.

Therefore, using Step 2. and propositional logic: Step 3. $\Gamma_0 \vdash \neg B_0 \supset (Th(c_0) \land Th(\neg'c_0))$

 $Th(c_0) \wedge Th(\neg c_0)$ is the encoded form of a contradiction. For any sentences $A, B, (A \wedge \neg A) \supset B$ is a provable formula of propositional logic and it can be used for this encoded form, too. Therefore,

Step 4. $\Gamma_0 \vdash (Th(c_0) \land Th(\neg' c_0)) \supset \neg Cons_{\sigma}.$

 $Th(c_0) \wedge Th(\neg'c_0)$ is the encoded form of a contradiction. For any sentences $A, B, (A \wedge \neg A) \supset B$ is a provable formula of propositional logic and it can be used for this encoded form, too. Therefore,

Step 4. $\Gamma_0 \vdash (Th(c_0) \land Th(\neg c_0)) \supset \neg Cons_{\sigma}.$

From Step 3. and Step 4. it follows that $\Gamma_0 \vdash \neg B_0 \supset \neg Cons_{\sigma}$. By propositional logic, $\Gamma_0 \vdash Cons_{\sigma} \supset B_0$.

 $Th(c_0) \wedge Th(\neg c_0)$ is the encoded form of a contradiction. For any sentences $A, B, (A \wedge \neg A) \supset B$ is a provable formula of propositional logic and it can be used for this encoded form, too. Therefore,

Step 4. $\Gamma_0 \vdash (Th(c_0) \land Th(\neg' c_0)) \supset \neg Cons_{\sigma}.$

From Step 3. and Step 4. it follows that

 $\Gamma_0 \vdash \neg B_0 \supset \neg Cons_{\sigma}.$

By propositional logic,

 $\Gamma_0 \vdash Cons_{\sigma} \supset B_0.$

Therefore, if $Cons_{\sigma}$ were provable, then B_0 , the Gödel sentence would be provable, too. But from the first incompleteness theorem we know that the Gödel sentence is not provable, and therefore $Cons_{\sigma}$ can't be provable, either. Q.e.d.

・ 同 ト ・ ヨ ト ・ ヨ ト