
The object language
Inductive de�nitions

András Máté

10.03.2023

András Máté metalogic 10th March



On alphabets

If our alphabet consists of the �rst two numerals, then we

should write A = {‘0', ‘1'}. We may have two �ideologies� for

omitting the quotation marks in such cases:

We use letters autonymously, i. e. as their own names.

We don't need to know what the letters are; it is enough

that we have names for them.

Consider �rst the one-letter alphabet

A0 = {α}

This is su�cient to name the natural numbers.

The two-letter alphabet

A1 = {α, β}

is su�cient for anything.

I. e., any language over some �nite alphabet can be simulated

by A1.

András Máté metalogic 10th March



On alphabets

If our alphabet consists of the �rst two numerals, then we

should write A = {‘0', ‘1'}. We may have two �ideologies� for

omitting the quotation marks in such cases:

We use letters autonymously, i. e. as their own names.

We don't need to know what the letters are; it is enough

that we have names for them.

Consider �rst the one-letter alphabet

A0 = {α}

This is su�cient to name the natural numbers.

The two-letter alphabet

A1 = {α, β}

is su�cient for anything.

I. e., any language over some �nite alphabet can be simulated

by A1.

András Máté metalogic 10th March



On alphabets

If our alphabet consists of the �rst two numerals, then we

should write A = {‘0', ‘1'}. We may have two �ideologies� for

omitting the quotation marks in such cases:

We use letters autonymously, i. e. as their own names.

We don't need to know what the letters are; it is enough

that we have names for them.

Consider �rst the one-letter alphabet

A0 = {α}

This is su�cient to name the natural numbers.

The two-letter alphabet

A1 = {α, β}

is su�cient for anything.

I. e., any language over some �nite alphabet can be simulated

by A1.

András Máté metalogic 10th March



On alphabets

If our alphabet consists of the �rst two numerals, then we

should write A = {‘0', ‘1'}. We may have two �ideologies� for

omitting the quotation marks in such cases:

We use letters autonymously, i. e. as their own names.

We don't need to know what the letters are; it is enough

that we have names for them.

Consider �rst the one-letter alphabet

A0 = {α}

This is su�cient to name the natural numbers.

The two-letter alphabet

A1 = {α, β}

is su�cient for anything.

I. e., any language over some �nite alphabet can be simulated

by A1.

András Máté metalogic 10th March



On alphabets

If our alphabet consists of the �rst two numerals, then we

should write A = {‘0', ‘1'}. We may have two �ideologies� for

omitting the quotation marks in such cases:

We use letters autonymously, i. e. as their own names.

We don't need to know what the letters are; it is enough

that we have names for them.

Consider �rst the one-letter alphabet

A0 = {α}

This is su�cient to name the natural numbers.

The two-letter alphabet

A1 = {α, β}

is su�cient for anything.

I. e., any language over some �nite alphabet can be simulated

by A1.

András Máté metalogic 10th March



On alphabets

If our alphabet consists of the �rst two numerals, then we

should write A = {‘0', ‘1'}. We may have two �ideologies� for

omitting the quotation marks in such cases:

We use letters autonymously, i. e. as their own names.

We don't need to know what the letters are; it is enough

that we have names for them.

Consider �rst the one-letter alphabet

A0 = {α}

This is su�cient to name the natural numbers.

The two-letter alphabet

A1 = {α, β}

is su�cient for anything.

I. e., any language over some �nite alphabet can be simulated

by A1.

András Máté metalogic 10th March



On alphabets

If our alphabet consists of the �rst two numerals, then we

should write A = {‘0', ‘1'}. We may have two �ideologies� for

omitting the quotation marks in such cases:

We use letters autonymously, i. e. as their own names.

We don't need to know what the letters are; it is enough

that we have names for them.

Consider �rst the one-letter alphabet

A0 = {α}

This is su�cient to name the natural numbers.

The two-letter alphabet

A1 = {α, β}

is su�cient for anything.

I. e., any language over some �nite alphabet can be simulated

by A1.
András Máté metalogic 10th March



Inductive de�nitions of string classes

Let C be a �nite alphabet and C◦ the class of the strings over it.

The inductive de�nition of an F subclass of C◦ consists of the

following three components:

Base of the induction: a class B ⊆ C◦ given by some

de�nition. We stipulate that B ⊆ F .

Inductive rules: a �nite collection of stipulations of the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

where a1, . . . an, b are strings over an alphabet C ∪ V. (The
members of V are understood as variables over C◦.)

Closure: the members of F are just the strings produced

from the basis by �nitely many applications of the

inductive rules.

We assume that the closure condition works (and we don't

mention it any more).

András Máté metalogic 10th March



Inductive de�nitions of string classes

Let C be a �nite alphabet and C◦ the class of the strings over it.

The inductive de�nition of an F subclass of C◦ consists of the

following three components:

Base of the induction: a class B ⊆ C◦ given by some

de�nition. We stipulate that B ⊆ F .

Inductive rules: a �nite collection of stipulations of the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

where a1, . . . an, b are strings over an alphabet C ∪ V. (The
members of V are understood as variables over C◦.)

Closure: the members of F are just the strings produced

from the basis by �nitely many applications of the

inductive rules.

We assume that the closure condition works (and we don't

mention it any more).

András Máté metalogic 10th March



Inductive de�nitions of string classes

Let C be a �nite alphabet and C◦ the class of the strings over it.

The inductive de�nition of an F subclass of C◦ consists of the

following three components:

Base of the induction: a class B ⊆ C◦ given by some

de�nition. We stipulate that B ⊆ F .

Inductive rules: a �nite collection of stipulations of the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

where a1, . . . an, b are strings over an alphabet C ∪ V. (The
members of V are understood as variables over C◦.)

Closure: the members of F are just the strings produced

from the basis by �nitely many applications of the

inductive rules.

We assume that the closure condition works (and we don't

mention it any more).

András Máté metalogic 10th March



Inductive de�nitions of string classes

Let C be a �nite alphabet and C◦ the class of the strings over it.

The inductive de�nition of an F subclass of C◦ consists of the

following three components:

Base of the induction: a class B ⊆ C◦ given by some

de�nition. We stipulate that B ⊆ F .

Inductive rules: a �nite collection of stipulations of the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

where a1, . . . an, b are strings over an alphabet C ∪ V. (The
members of V are understood as variables over C◦.)

Closure: the members of F are just the strings produced

from the basis by �nitely many applications of the

inductive rules.

We assume that the closure condition works (and we don't

mention it any more).

András Máté metalogic 10th March



Inductive de�nitions of string classes

Let C be a �nite alphabet and C◦ the class of the strings over it.

The inductive de�nition of an F subclass of C◦ consists of the

following three components:

Base of the induction: a class B ⊆ C◦ given by some

de�nition. We stipulate that B ⊆ F .

Inductive rules: a �nite collection of stipulations of the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

where a1, . . . an, b are strings over an alphabet C ∪ V. (The
members of V are understood as variables over C◦.)

Closure: the members of F are just the strings produced

from the basis by �nitely many applications of the

inductive rules.

We assume that the closure condition works (and we don't

mention it any more).

András Máté metalogic 10th March



Inductive de�nitions of string classes

Let C be a �nite alphabet and C◦ the class of the strings over it.

The inductive de�nition of an F subclass of C◦ consists of the

following three components:

Base of the induction: a class B ⊆ C◦ given by some

de�nition. We stipulate that B ⊆ F .

Inductive rules: a �nite collection of stipulations of the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

where a1, . . . an, b are strings over an alphabet C ∪ V. (The
members of V are understood as variables over C◦.)

Closure: the members of F are just the strings produced

from the basis by �nitely many applications of the

inductive rules.

We assume that the closure condition works (and we don't

mention it any more).

András Máté metalogic 10th March



Inductive classes and some notation

Inductive classes (of strings over an alphabet C) are those
subclasses of C◦ which have an inductive de�nition.

C◦ is an inductive class itself (trivial).

Our rules have the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

We can write them equivalently as

⌜a1 ∈ F ⇒ a2 ∈ F ⇒ . . . ⇒ an ∈ F ⇒ b ∈ F⌝

Let us conventionally omit the reference to the class to be

de�ned ⌜∈ F⌝ and remember to this by using → instead of ⇒.

So our rules have now the form

⌜a1 → a2 → . . . → an → b⌝

András Máté metalogic 10th March



Inductive classes and some notation

Inductive classes (of strings over an alphabet C) are those
subclasses of C◦ which have an inductive de�nition.

C◦ is an inductive class itself (trivial).

Our rules have the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

We can write them equivalently as

⌜a1 ∈ F ⇒ a2 ∈ F ⇒ . . . ⇒ an ∈ F ⇒ b ∈ F⌝

Let us conventionally omit the reference to the class to be

de�ned ⌜∈ F⌝ and remember to this by using → instead of ⇒.

So our rules have now the form

⌜a1 → a2 → . . . → an → b⌝

András Máté metalogic 10th March



Inductive classes and some notation

Inductive classes (of strings over an alphabet C) are those
subclasses of C◦ which have an inductive de�nition.

C◦ is an inductive class itself (trivial).

Our rules have the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

We can write them equivalently as

⌜a1 ∈ F ⇒ a2 ∈ F ⇒ . . . ⇒ an ∈ F ⇒ b ∈ F⌝

Let us conventionally omit the reference to the class to be

de�ned ⌜∈ F⌝ and remember to this by using → instead of ⇒.

So our rules have now the form

⌜a1 → a2 → . . . → an → b⌝

András Máté metalogic 10th March



Inductive classes and some notation

Inductive classes (of strings over an alphabet C) are those
subclasses of C◦ which have an inductive de�nition.

C◦ is an inductive class itself (trivial).

Our rules have the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

We can write them equivalently as

⌜a1 ∈ F ⇒ a2 ∈ F ⇒ . . . ⇒ an ∈ F ⇒ b ∈ F⌝

Let us conventionally omit the reference to the class to be

de�ned ⌜∈ F⌝ and remember to this by using → instead of ⇒.

So our rules have now the form

⌜a1 → a2 → . . . → an → b⌝

András Máté metalogic 10th March



Inductive classes and some notation

Inductive classes (of strings over an alphabet C) are those
subclasses of C◦ which have an inductive de�nition.

C◦ is an inductive class itself (trivial).

Our rules have the form

⌜a1, a2, . . . , an ∈ F ⇒ b ∈ F⌝

We can write them equivalently as

⌜a1 ∈ F ⇒ a2 ∈ F ⇒ . . . ⇒ an ∈ F ⇒ b ∈ F⌝

Let us conventionally omit the reference to the class to be

de�ned ⌜∈ F⌝ and remember to this by using → instead of ⇒.

So our rules have now the form

⌜a1 → a2 → . . . → an → b⌝

András Máté metalogic 10th March



An example: numbers divisible by 3, in dyadic notation

Let us use the alphabet Ad = {0, 1}. The strings are 0-1
sequences including the dyadic numerals.

The �rst numbers divisible by 3 are 0, 11 and 110. They will

give the base for our de�nition. We can put them into the

de�nition as input-free rules.

If a number is divisible by 3 and its numeral ends with 00, (so
the numeral is of the form x00), then the next number divisible

by 3 will be x11. As a formal rule,

x00 → x11

If our number is x01, then the next number divisible by 3 will

be y00, where y is the follower of x. We most now encode the

relation of following in the rule. We use an auxiliary letter F to

do this:

x01 → xFy → y00

András Máté metalogic 10th March



An example: numbers divisible by 3, in dyadic notation

Let us use the alphabet Ad = {0, 1}. The strings are 0-1
sequences including the dyadic numerals.

The �rst numbers divisible by 3 are 0, 11 and 110. They will

give the base for our de�nition. We can put them into the

de�nition as input-free rules.

If a number is divisible by 3 and its numeral ends with 00, (so
the numeral is of the form x00), then the next number divisible

by 3 will be x11. As a formal rule,

x00 → x11

If our number is x01, then the next number divisible by 3 will

be y00, where y is the follower of x. We most now encode the

relation of following in the rule. We use an auxiliary letter F to

do this:

x01 → xFy → y00

András Máté metalogic 10th March



An example: numbers divisible by 3, in dyadic notation

Let us use the alphabet Ad = {0, 1}. The strings are 0-1
sequences including the dyadic numerals.

The �rst numbers divisible by 3 are 0, 11 and 110. They will

give the base for our de�nition. We can put them into the

de�nition as input-free rules.

If a number is divisible by 3 and its numeral ends with 00, (so
the numeral is of the form x00), then the next number divisible

by 3 will be x11. As a formal rule,

x00 → x11

If our number is x01, then the next number divisible by 3 will

be y00, where y is the follower of x. We most now encode the

relation of following in the rule. We use an auxiliary letter F to

do this:

x01 → xFy → y00

András Máté metalogic 10th March



An example: numbers divisible by 3, in dyadic notation

Let us use the alphabet Ad = {0, 1}. The strings are 0-1
sequences including the dyadic numerals.

The �rst numbers divisible by 3 are 0, 11 and 110. They will

give the base for our de�nition. We can put them into the

de�nition as input-free rules.

If a number is divisible by 3 and its numeral ends with 00, (so
the numeral is of the form x00), then the next number divisible

by 3 will be x11. As a formal rule,

x00 → x11

If our number is x01, then the next number divisible by 3 will

be y00, where y is the follower of x. We most now encode the

relation of following in the rule. We use an auxiliary letter F to

do this:

x01 → xFy → y00

András Máté metalogic 10th March



An example: numbers divisible by 3, in dyadic notation

Let us use the alphabet Ad = {0, 1}. The strings are 0-1
sequences including the dyadic numerals.

The �rst numbers divisible by 3 are 0, 11 and 110. They will

give the base for our de�nition. We can put them into the

de�nition as input-free rules.

If a number is divisible by 3 and its numeral ends with 00, (so
the numeral is of the form x00), then the next number divisible

by 3 will be x11. As a formal rule,

x00 → x11

If our number is x01, then the next number divisible by 3 will

be y00, where y is the follower of x. We most now encode the

relation of following in the rule. We use an auxiliary letter F to

do this:

x01 → xFy → y00

András Máté metalogic 10th March



Numbers divisible by 3, continuation

Similarly, we need the rules x10 → xFy → y01 and

x11 → xFy → y10.
Let us de�ne the relation F inductively, too. Base: x0Fx1, rule:
xFy → x1Fy0. For technical reasons, we need to add 1F10 to

the base.

Our de�nition has now the following form: (see next slide)

András Máté metalogic 10th March



Numbers divisible by 3, continuation

Similarly, we need the rules x10 → xFy → y01 and

x11 → xFy → y10.

Let us de�ne the relation F inductively, too. Base: x0Fx1, rule:
xFy → x1Fy0. For technical reasons, we need to add 1F10 to

the base.

Our de�nition has now the following form: (see next slide)

András Máté metalogic 10th March



Numbers divisible by 3, continuation

Similarly, we need the rules x10 → xFy → y01 and

x11 → xFy → y10.
Let us de�ne the relation F inductively, too. Base: x0Fx1, rule:
xFy → x1Fy0. For technical reasons, we need to add 1F10 to

the base.

Our de�nition has now the following form: (see next slide)

András Máté metalogic 10th March



Numbers divisible by 3, continuation

Similarly, we need the rules x10 → xFy → y01 and

x11 → xFy → y10.
Let us de�ne the relation F inductively, too. Base: x0Fx1, rule:
xFy → x1Fy0. For technical reasons, we need to add 1F10 to

the base.

Our de�nition has now the following form: (see next slide)

András Máté metalogic 10th March



Numbers divisible by 3, continuation2

0

11

110

x0Fx1

1F10

xFy → x1Fy0

x00 → x11

x01 → xFy → y00

x10 → xFy → y01

x11 → xFy → y10

This is now of the sort (form) of inductive de�nitions we call

canonical calculus. Formal de�nition on the next slide.

András Máté metalogic 10th March



Numbers divisible by 3, continuation2

0

11

110

x0Fx1

1F10

xFy → x1Fy0

x00 → x11

x01 → xFy → y00

x10 → xFy → y01

x11 → xFy → y10

This is now of the sort (form) of inductive de�nitions we call

canonical calculus. Formal de�nition on the next slide.

András Máté metalogic 10th March



Canonical calculus (formal de�nition)

Let C be a (�nite) alphabet and `→'/∈ C. C-rules are de�ned
inductively as follows:

(i) If f ∈ C◦, then f is a C-rule.
(ii) If r is a C-rule and f ∈ C◦, then ⌜f → r⌝ is a C-rule.

Let C and V alphabets s.t. `→' /∈ C ∪ V. A �nite class K of

C ∪ V-rules is called a canonical calculus over C. The members of

K are the rules of K and the members of V (if any) are the

variables of K.

András Máté metalogic 10th March



Canonical calculus (formal de�nition)

Let C be a (�nite) alphabet and `→'/∈ C. C-rules are de�ned
inductively as follows:

(i) If f ∈ C◦, then f is a C-rule.
(ii) If r is a C-rule and f ∈ C◦, then ⌜f → r⌝ is a C-rule.

Let C and V alphabets s.t. `→' /∈ C ∪ V. A �nite class K of

C ∪ V-rules is called a canonical calculus over C. The members of

K are the rules of K and the members of V (if any) are the

variables of K.

András Máté metalogic 10th March



Canonical calculus (formal de�nition)

Let C be a (�nite) alphabet and `→'/∈ C. C-rules are de�ned
inductively as follows:

(i) If f ∈ C◦, then f is a C-rule.
(ii) If r is a C-rule and f ∈ C◦, then ⌜f → r⌝ is a C-rule.

Let C and V alphabets s.t. `→' /∈ C ∪ V. A �nite class K of

C ∪ V-rules is called a canonical calculus over C. The members of

K are the rules of K and the members of V (if any) are the

variables of K.

András Máté metalogic 10th March



Canonical calculus (formal de�nition)

Let C be a (�nite) alphabet and `→'/∈ C. C-rules are de�ned
inductively as follows:

(i) If f ∈ C◦, then f is a C-rule.
(ii) If r is a C-rule and f ∈ C◦, then ⌜f → r⌝ is a C-rule.

Let C and V alphabets s.t. `→' /∈ C ∪ V. A �nite class K of

C ∪ V-rules is called a canonical calculus over C. The members of

K are the rules of K and the members of V (if any) are the

variables of K.

András Máté metalogic 10th March



Strings derivable in a canonical calculus

Let C be an alphabet and K a canonical calculus over C. The
relation K 7→ f (read: �K derives f � or �f is derivable in K�) is

de�ned by induction:

(i) f ∈ K ⇒ K 7→ f

(ii) If K 7→ f and f ′ is the result of substituting a

C-string for all occurrences of a variable in f ,

then K 7→ f ′ (Substitution)

(iii) If K 7→ f, K 7→ f → g and ‘ → ' does not

occur in f , then K 7→ g (Detachment)

András Máté metalogic 10th March



Strings derivable in a canonical calculus

Let C be an alphabet and K a canonical calculus over C. The
relation K 7→ f (read: �K derives f � or �f is derivable in K�) is

de�ned by induction:

(i) f ∈ K ⇒ K 7→ f

(ii) If K 7→ f and f ′ is the result of substituting a

C-string for all occurrences of a variable in f ,

then K 7→ f ′ (Substitution)

(iii) If K 7→ f, K 7→ f → g and ‘ → ' does not

occur in f , then K 7→ g (Detachment)

András Máté metalogic 10th March



Strings derivable in a canonical calculus

Let C be an alphabet and K a canonical calculus over C. The
relation K 7→ f (read: �K derives f � or �f is derivable in K�) is

de�ned by induction:

(i) f ∈ K ⇒ K 7→ f

(ii) If K 7→ f and f ′ is the result of substituting a

C-string for all occurrences of a variable in f ,

then K 7→ f ′ (Substitution)

(iii) If K 7→ f, K 7→ f → g and ‘ → ' does not

occur in f , then K 7→ g (Detachment)

András Máté metalogic 10th March



Strings derivable in a canonical calculus

Let C be an alphabet and K a canonical calculus over C. The
relation K 7→ f (read: �K derives f � or �f is derivable in K�) is

de�ned by induction:

(i) f ∈ K ⇒ K 7→ f

(ii) If K 7→ f and f ′ is the result of substituting a

C-string for all occurrences of a variable in f ,

then K 7→ f ′ (Substitution)

(iii) If K 7→ f, K 7→ f → g and ‘ → ' does not

occur in f , then K 7→ g (Detachment)

András Máté metalogic 10th March



Strings derivable in a canonical calculus

Let C be an alphabet and K a canonical calculus over C. The
relation K 7→ f (read: �K derives f � or �f is derivable in K�) is

de�ned by induction:

(i) f ∈ K ⇒ K 7→ f

(ii) If K 7→ f and f ′ is the result of substituting a

C-string for all occurrences of a variable in f ,

then K 7→ f ′ (Substitution)

(iii) If K 7→ f, K 7→ f → g and ‘ → ' does not

occur in f , then K 7→ g (Detachment)

András Máté metalogic 10th March



Inductive (sub)classes

Let A be an alphabet. The class of strings F is an

inductive subclass of A◦ i� there exist C and K s.t.

C is an alphabet and A ⊆ C;
K is a canonical calculus over C;
F = {x : x ∈ A◦ ∧K 7→ x}.

The members of the class B = C − A are the auxiliary letters.

Homework: If F and G are inductive subclasses of some string

class A◦, then F ∪G and F ∩G are inductive subclasses of it,

too.

A convention about the use of auxiliary letters: We use them to

express predicates of strings. If we want to use P to express a

monadic predicate, we write it as a pre�x: Px. If it is an n-adic
predicate (n ≥ 2), we write it in�x, on the following way:

x1Px2P . . . Pxn.

András Máté metalogic 10th March



Inductive (sub)classes

Let A be an alphabet. The class of strings F is an

inductive subclass of A◦ i� there exist C and K s.t.

C is an alphabet and A ⊆ C;
K is a canonical calculus over C;
F = {x : x ∈ A◦ ∧K 7→ x}.

The members of the class B = C − A are the auxiliary letters.

Homework: If F and G are inductive subclasses of some string

class A◦, then F ∪G and F ∩G are inductive subclasses of it,

too.

A convention about the use of auxiliary letters: We use them to

express predicates of strings. If we want to use P to express a

monadic predicate, we write it as a pre�x: Px. If it is an n-adic
predicate (n ≥ 2), we write it in�x, on the following way:

x1Px2P . . . Pxn.

András Máté metalogic 10th March



Inductive (sub)classes

Let A be an alphabet. The class of strings F is an

inductive subclass of A◦ i� there exist C and K s.t.

C is an alphabet and A ⊆ C;
K is a canonical calculus over C;
F = {x : x ∈ A◦ ∧K 7→ x}.

The members of the class B = C − A are the auxiliary letters.

Homework: If F and G are inductive subclasses of some string

class A◦, then F ∪G and F ∩G are inductive subclasses of it,

too.

A convention about the use of auxiliary letters: We use them to

express predicates of strings. If we want to use P to express a

monadic predicate, we write it as a pre�x: Px. If it is an n-adic
predicate (n ≥ 2), we write it in�x, on the following way:

x1Px2P . . . Pxn.

András Máté metalogic 10th March



Inductive (sub)classes

Let A be an alphabet. The class of strings F is an

inductive subclass of A◦ i� there exist C and K s.t.

C is an alphabet and A ⊆ C;
K is a canonical calculus over C;
F = {x : x ∈ A◦ ∧K 7→ x}.

The members of the class B = C − A are the auxiliary letters.

Homework: If F and G are inductive subclasses of some string

class A◦, then F ∪G and F ∩G are inductive subclasses of it,

too.

A convention about the use of auxiliary letters: We use them to

express predicates of strings. If we want to use P to express a

monadic predicate, we write it as a pre�x: Px. If it is an n-adic
predicate (n ≥ 2), we write it in�x, on the following way:

x1Px2P . . . Pxn.

András Máté metalogic 10th March



Inductive (sub)classes

Let A be an alphabet. The class of strings F is an

inductive subclass of A◦ i� there exist C and K s.t.

C is an alphabet and A ⊆ C;
K is a canonical calculus over C;
F = {x : x ∈ A◦ ∧K 7→ x}.

The members of the class B = C − A are the auxiliary letters.

Homework: If F and G are inductive subclasses of some string

class A◦, then F ∪G and F ∩G are inductive subclasses of it,

too.

A convention about the use of auxiliary letters: We use them to

express predicates of strings. If we want to use P to express a

monadic predicate, we write it as a pre�x: Px. If it is an n-adic
predicate (n ≥ 2), we write it in�x, on the following way:

x1Px2P . . . Pxn.

András Máté metalogic 10th March



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 10th March



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 10th March



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 10th March



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 10th March



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 10th March



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 10th March



Some additional remarks

Let A◦ be the class of all strings over an alphabet A.

The empty class ∅ is an inductive subclass of A◦.

A◦ is an inductive subclass of itself.

Any class {a1, a2, . . . an} (i.e., any string class de�ned by

�nite enumeration) is an inductive subclass of A◦.

Inductive classes are not closed for di�erence. Even the

complement B̄ = A◦ −B of an inductive class B is not

necessarily inductive.

The �rst three remarks are trivial. The fourth one is extremely

important for metalogic and will be proved (by examples) later.

András Máté metalogic 10th March



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 10th March



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 10th March



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 10th March



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 10th March



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 10th March



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 10th March



Smullyan's mysterious automaton

We have are given a machine that works like a canonical

calculus. We know only that it prints strings of an alphabet

S = {¬, P, N, (, )}.

We equip the strings with the following grammar and semantics:

Sentences are strings of the form

P (X), ¬P (X), PN(X),¬PN(X), where X is any member

of S◦.

Norm of the string X is the string ⌜X(X)⌝.

The sentence P (X) is true i� the string X gets (sometimes)

printed by our machine; PN(X) is true i� the norm of X,

i.e. X(X) will be printed sometimes.

`¬' means negation.

András Máté metalogic 10th March



Homework about Smullyan's machine

Prove that the machine cannot print all and only the true

sentences. (Maybe it prints strings that are not sentences, but

we speak this time only about sentences the machine can print.)

I.e., if it prints only true sentences, then there is at least one

true sentence which will be never printed.

Bonus: If you proved this proposition, you may propose a name

for it.

András Máté metalogic 10th March


