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General

Source (= textbook):
Ruzsa, I., Introduction to Metalogic. Budapest: Áron
Publishers, 1997.

Necessary preliminary knowledge:
In principle: nothing.
In practice: the language of �rst-order logic/set theory.

Method: lecture + solving problems.

Evaluation: solving problems (during the classes or in the
exam period).

Webpage:
http://phil.elte.hu/mate/metalogic/metalogic.html.
Presentations (pdf-s) will be published after the classes.
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What is this?

Metalogic: Logical theory of logical theories (+ theories
formalized in logic).
Metalogical theorems: deductive completeness, algorithmic
undecidability of �rst order logic; negation-incompleteness of
�rst-order Peano arithmetic, etc.
Aim: build up a theory such that

it proves such theorems in an abstract form (i. e., about a
large family of theories) and in an unique framework.

it can serve as a foundation of other logical theories: it
doesn't use them and it gives a clear account about its
presuppositions.

Our theory: that of canonical calculi (including Markov
algorithms).
Circularity- (`hen and egg'-)problem in foundations: the relation
between syntax (proof theory) and semantics (set theory).
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A metalanguage for formal languages

Metalanguage:

A fragment of the communication language

extended by some formal tools

that su�ces to formulate our theory.
Expressions of our metalanguage:

sentences;

names;

functors.

Functors are expressions containing empty places (argument
places) that can be �lled in by some expressions of de�nite type
(arguments). By �lling in the empty places we gain a new
expression of some de�nite type.
I.e., it is assumed that there is one and only type assigned to
each empty place of a functor.
Or: a functor is an automaton taking expressions as inputs and
producing another expression as the output.
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Types (groups) of functors

A functor is called monadic, dyadic, . . . , n-adic according to the
number of the empty places.
A functor is homogeneous if the same type is assigned to each
empty place.
Types (families) of homogeneous functors:

sentential functors take sentences as arguments and give a
sentence;

name functors take names and give a name;

predicates take names and give a sentence.

A special dyadic name functor: concatenation (∩). If a and b are
two strings, then a∩b is the string beginning with a and
continued by b.
A special dyadic predicate: identity. If a and b are strings, then
a = b is the sentence saying that a and b are the same string.
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Logical tools I.: quanti�ers and variables

To express sentences containing expressions like `every', `each',
some', etc. we use quanti�ers and variables.

Sentences of the form pEvery A is a Bq should be rewritten as
pFor every x, if x is an A, then x is a Bq

Abbreviation: p
∧
x(if x is an A, then x is a B)q

pSome A is a Bq: p
∨
x(x is an A and x is a B)q

.

We have an unlimited number of variables.

They can occur in sentences at any place where names can
occur.

Plus: they can occur in quantifying expressions (QE-s)
consisting of a quanti�er (

∨
or

∧
) and a variable.
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QE-s in general

QE-s are monadic sentential functors. The argument of a QE is
called its scope. The variable of a QE makes the occurrences in
its scope bounded. Other occurrences are free.

Sentences containing no free variable occurrences are closed,
other sentences are open. Names can be closed resp. open, too.∧
xA is true i� any substitution of the quotation name of a

string for x into A gives a true sentence.∨
xA is true i� at least one substitution of the quotation name

of a string for x into A gives a true sentence.

The intended universe of this metalanguage is the class of �nite
strings of letters of some �nite alphabet. Quanti�cation is
de�ned by substitution and by this, we are not committed to
the existence of some set-theoretic universe built on this class.
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Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors
of the metalanguage (A and B are sentences of the
metalanguage):

¬A for pIt is not true that Aq;

A ∧B for pA and Bq;

A ∨B for pA or Bq;

A⇒ B for p If A, then Bq;

A⇔ B for pA if and only if Bq.

If you studied classical propositional logic, use the truth
conditions learned there for such sentences.
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Quotations and quasi-quotations

The quotation name of an expression a1a2 . . . an is the
expression we get by putting the expression to be named
between the quotation marks ` and '. Quotation names are
constant names, so it makes no sense to quantify for the letters
occurring in them. It makes sense to say that `Lucy' is the name
of a pretty girl but it is nonsense to say that for every y, `Lucy'
is the name of a pretty girl.

The quasi-quotation marks p and q delimit schemes of
metalanguage expressions where some schematic letters
(A, B, C, . . .) occur which can be substituted by expressions of
some certain (declared) type. The items on the previous slide
should be understood as e.g. for each sentence A and B, the
string resulting from the concatenation of A, the sign `∧' and B
is a sentence again. So, distinctly from the common quotation
marks, it is possible to quantify into the expressions delimited
by quasi-quotation marks from the outside. It is important again
that this quanti�cation should be interpreted by substitution.
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Class notation

Instead of saying that a string a has the property F we say that
a is a member of the class of F -s.

If ϕ(x) is a sentence with the single free variable x, then the
symbol {x : ϕ(x)} is a class abstraction and may be (loosely)
read as pthe class of ϕ-sq.

More exactly, the sentence pa is a member of {x : ϕ(x)}q means
that the sentence resulting from ϕ(x) by the substitution of the
individual term a for the free occurrences of x (expressed as
ϕ(a)) is true.

We use capital letters as metalanguage variables for class
abstractions and the symbol `∈' as an abbreviation for `is a
member of'.

Some trivial notational conventions:

a /∈ A
a1, a2, . . . an ∈ A
{a1, a2, . . . an}
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Class relations, operations, etc.

A ⊆ B ⇔Df

∧
x(x ∈ A⇒ x ∈ B) (Subset)

A = B ⇔Df (A ⊆ B ∧B ⊆ A) (Class identity)

A ⊂ B ⇔Df (A ⊆ B ∧A 6= B) (Proper subclass)

∅ =Df {x : x 6= x} (Empty class)

A ∪B =Df {x : x ∈ A ∨ x ∈ B} (Union)

A ∩B =Df {x : x ∈ A ∧ x ∈ B} (Intersection)

A−B =Df {x : x ∈ A ∧ x 6∈ B} (Di�erence)

A is disjoint from B ⇐⇒Df A ∩B = ∅
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Language radices

A language is characterized:
1 By its alphabet, i.e. a �nite collection A of objects called

letters;
2 By the set A◦ of its strings or words;
3 By the operation ∩ of concatenation over the strings;
4 By the fact that there is a neutral element for the operation

of concatenation: the empty word ∅;
5 By various classes of strings regarded as categories of

meaningful expressions.

The �rst four items are together the radix of the language. We
want to describe it axiomatically because we don't want to refer
to set theory for making precise the concepts (�niteness etc.)
used in the above enumeration.
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Axioms for language radices

A ⊆ A◦ and ∅ ∈ A◦ (R1)

x, y ∈ A◦ ⇒ x∩y ∈ A◦ (R2)

x, y, z ∈ A◦ ⇒ (x∩y)∩z = x∩(y∩z) (R3)

Let us leave the antecedent x(, y, etc.) ∈ A◦; Latin letters are
always variables for strings.

x 6= ∅⇔
∨
y
∨
α(α ∈ A ∧ x = y∩α) (R4)

(α, β ∈ A ∧ x∩α = y∩β)⇒ (x = y ∧ α = β) (R5)

(x∩y = x⇔ y = ∅) ∧ ((x∩y = y ⇔ x = ∅)) (R6)

That's all. (R7)

András Máté metalogic 03. March



Axioms for language radices

A ⊆ A◦ and ∅ ∈ A◦ (R1)

x, y ∈ A◦ ⇒ x∩y ∈ A◦ (R2)

x, y, z ∈ A◦ ⇒ (x∩y)∩z = x∩(y∩z) (R3)

Let us leave the antecedent x(, y, etc.) ∈ A◦; Latin letters are
always variables for strings.

x 6= ∅⇔
∨
y
∨
α(α ∈ A ∧ x = y∩α) (R4)

(α, β ∈ A ∧ x∩α = y∩β)⇒ (x = y ∧ α = β) (R5)

(x∩y = x⇔ y = ∅) ∧ ((x∩y = y ⇔ x = ∅)) (R6)

That's all. (R7)

András Máté metalogic 03. March



Axioms for language radices

A ⊆ A◦ and ∅ ∈ A◦ (R1)

x, y ∈ A◦ ⇒ x∩y ∈ A◦ (R2)

x, y, z ∈ A◦ ⇒ (x∩y)∩z = x∩(y∩z) (R3)

Let us leave the antecedent x(, y, etc.) ∈ A◦; Latin letters are
always variables for strings.

x 6= ∅⇔
∨
y
∨
α(α ∈ A ∧ x = y∩α) (R4)

(α, β ∈ A ∧ x∩α = y∩β)⇒ (x = y ∧ α = β) (R5)

(x∩y = x⇔ y = ∅) ∧ ((x∩y = y ⇔ x = ∅)) (R6)

That's all. (R7)

András Máté metalogic 03. March



Axioms for language radices

A ⊆ A◦ and ∅ ∈ A◦ (R1)

x, y ∈ A◦ ⇒ x∩y ∈ A◦ (R2)

x, y, z ∈ A◦ ⇒ (x∩y)∩z = x∩(y∩z) (R3)

Let us leave the antecedent x(, y, etc.) ∈ A◦; Latin letters are
always variables for strings.

x 6= ∅⇔
∨
y
∨
α(α ∈ A ∧ x = y∩α) (R4)

(α, β ∈ A ∧ x∩α = y∩β)⇒ (x = y ∧ α = β) (R5)

(x∩y = x⇔ y = ∅) ∧ ((x∩y = y ⇔ x = ∅)) (R6)

That's all. (R7)

András Máté metalogic 03. March



Axioms for language radices

A ⊆ A◦ and ∅ ∈ A◦ (R1)

x, y ∈ A◦ ⇒ x∩y ∈ A◦ (R2)

x, y, z ∈ A◦ ⇒ (x∩y)∩z = x∩(y∩z) (R3)

Let us leave the antecedent x(, y, etc.) ∈ A◦; Latin letters are
always variables for strings.

x 6= ∅⇔
∨
y
∨
α(α ∈ A ∧ x = y∩α) (R4)

(α, β ∈ A ∧ x∩α = y∩β)⇒ (x = y ∧ α = β) (R5)

(x∩y = x⇔ y = ∅) ∧ ((x∩y = y ⇔ x = ∅)) (R6)

That's all. (R7)

András Máté metalogic 03. March



Axioms for language radices

A ⊆ A◦ and ∅ ∈ A◦ (R1)

x, y ∈ A◦ ⇒ x∩y ∈ A◦ (R2)

x, y, z ∈ A◦ ⇒ (x∩y)∩z = x∩(y∩z) (R3)

Let us leave the antecedent x(, y, etc.) ∈ A◦; Latin letters are
always variables for strings.

x 6= ∅⇔
∨
y
∨
α(α ∈ A ∧ x = y∩α) (R4)

(α, β ∈ A ∧ x∩α = y∩β)⇒ (x = y ∧ α = β) (R5)

(x∩y = x⇔ y = ∅) ∧ ((x∩y = y ⇔ x = ∅)) (R6)

That's all. (R7)

András Máté metalogic 03. March



Axioms for language radices

A ⊆ A◦ and ∅ ∈ A◦ (R1)

x, y ∈ A◦ ⇒ x∩y ∈ A◦ (R2)

x, y, z ∈ A◦ ⇒ (x∩y)∩z = x∩(y∩z) (R3)

Let us leave the antecedent x(, y, etc.) ∈ A◦; Latin letters are
always variables for strings.

x 6= ∅⇔
∨
y
∨
α(α ∈ A ∧ x = y∩α) (R4)

(α, β ∈ A ∧ x∩α = y∩β)⇒ (x = y ∧ α = β) (R5)

(x∩y = x⇔ y = ∅) ∧ ((x∩y = y ⇔ x = ∅)) (R6)

That's all. (R7)

András Máté metalogic 03. March



Axioms for language radices

A ⊆ A◦ and ∅ ∈ A◦ (R1)

x, y ∈ A◦ ⇒ x∩y ∈ A◦ (R2)

x, y, z ∈ A◦ ⇒ (x∩y)∩z = x∩(y∩z) (R3)

Let us leave the antecedent x(, y, etc.) ∈ A◦; Latin letters are
always variables for strings.

x 6= ∅⇔
∨
y
∨
α(α ∈ A ∧ x = y∩α) (R4)

(α, β ∈ A ∧ x∩α = y∩β)⇒ (x = y ∧ α = β) (R5)

(x∩y = x⇔ y = ∅) ∧ ((x∩y = y ⇔ x = ∅)) (R6)

That's all. (R7)

András Máté metalogic 03. March


