Metalogic

 Spring Semester 2023

 Spring Semester 2023}

András Máté

Eötvös Loránd University Budapest Institute of Philosophy, Department of Logic mate.andras53@gmail.com
03.02.2023

General

General

- Source ($=$ textbook):

Ruzsa, I., Introduction to Metalogic. Budapest: Áron Publishers, 1997.

General

- Source (= textbook):

Ruzsa, I., Introduction to Metalogic. Budapest: Áron Publishers, 1997.

- Necessary preliminary knowledge:

In principle: nothing.
In practice: the language of first-order logic/set theory.

General

- Source (= textbook):

Ruzsa, I., Introduction to Metalogic. Budapest: Áron Publishers, 1997.

- Necessary preliminary knowledge:

In principle: nothing.
In practice: the language of first-order logic/set theory.

- Method: lecture + solving problems.

General

- Source (= textbook):

Ruzsa, I., Introduction to Metalogic. Budapest: Áron Publishers, 1997.

- Necessary preliminary knowledge:

In principle: nothing.
In practice: the language of first-order logic/set theory.

- Method: lecture + solving problems.
- Evaluation: solving problems (during the classes or in the exam period).
- Source (= textbook):

Ruzsa, I., Introduction to Metalogic. Budapest: Áron Publishers, 1997.

- Necessary preliminary knowledge:

In principle: nothing.
In practice: the language of first-order logic/set theory.

- Method: lecture + solving problems.
- Evaluation: solving problems (during the classes or in the exam period).
- Webpage:
http://phil.elte.hu/mate/metalogic/metalogic.html. Presentations (pdf-s) will be published after the classes.

What is this?

What is this?

Metalogic: Logical theory of logical theories (+ theories formalized in logic).

What is this?

Metalogic: Logical theory of logical theories (+ theories formalized in logic).
Metalogical theorems: deductive completeness, algorithmic undecidability of first order logic; negation-incompleteness of first-order Peano arithmetic, etc.

What is this?

Metalogic: Logical theory of logical theories (+ theories formalized in logic).
Metalogical theorems: deductive completeness, algorithmic undecidability of first order logic; negation-incompleteness of first-order Peano arithmetic, etc. Aim: build up a theory such that

What is this?

Metalogic: Logical theory of logical theories (+ theories formalized in logic).
Metalogical theorems: deductive completeness, algorithmic undecidability of first order logic; negation-incompleteness of first-order Peano arithmetic, etc. Aim: build up a theory such that

- it proves such theorems in an abstract form (i. e., about a large family of theories) and in an unique framework.

What is this?

Metalogic: Logical theory of logical theories (+ theories formalized in logic).
Metalogical theorems: deductive completeness, algorithmic undecidability of first order logic; negation-incompleteness of first-order Peano arithmetic, etc. Aim: build up a theory such that

- it proves such theorems in an abstract form (i. e., about a large family of theories) and in an unique framework.
- it can serve as a foundation of other logical theories: it doesn't use them and it gives a clear account about its presuppositions.

What is this?

Metalogic: Logical theory of logical theories (+ theories formalized in logic).
Metalogical theorems: deductive completeness, algorithmic undecidability of first order logic; negation-incompleteness of first-order Peano arithmetic, etc. Aim: build up a theory such that

- it proves such theorems in an abstract form (i. e., about a large family of theories) and in an unique framework.
- it can serve as a foundation of other logical theories: it doesn't use them and it gives a clear account about its presuppositions.
Our theory: that of canonical calculi (including Markov algorithms).

What is this?

Metalogic: Logical theory of logical theories (+ theories formalized in logic).
Metalogical theorems: deductive completeness, algorithmic undecidability of first order logic; negation-incompleteness of first-order Peano arithmetic, etc.
Aim: build up a theory such that

- it proves such theorems in an abstract form (i. e., about a large family of theories) and in an unique framework.
- it can serve as a foundation of other logical theories: it doesn't use them and it gives a clear account about its presuppositions.
Our theory: that of canonical calculi (including Markov algorithms).
Circularity- ('hen and egg'-)problem in foundations: the relation between syntax (proof theory) and semantics (set theory).

A metalanguage for formal languages

Metalanguage:

A metalanguage for formal languages

Metalanguage:

- A fragment of the communication language

A metalanguage for formal languages

Metalanguage:

- A fragment of the communication language
- extended by some formal tools

A metalanguage for formal languages

Metalanguage:

- A fragment of the communication language
- extended by some formal tools
that suffices to formulate our theory.

A metalanguage for formal languages

Metalanguage:

- A fragment of the communication language
- extended by some formal tools
that suffices to formulate our theory. Expressions of our metalanguage:

A metalanguage for formal languages

Metalanguage:

- A fragment of the communication language
- extended by some formal tools
that suffices to formulate our theory. Expressions of our metalanguage:
- sentences;

A metalanguage for formal languages

Metalanguage:

- A fragment of the communication language
- extended by some formal tools
that suffices to formulate our theory. Expressions of our metalanguage:
- sentences;
- names;

A metalanguage for formal languages

Metalanguage:

- A fragment of the communication language
- extended by some formal tools
that suffices to formulate our theory. Expressions of our metalanguage:
- sentences;
- names;
- functors.

A metalanguage for formal languages

Metalanguage:

- A fragment of the communication language
- extended by some formal tools
that suffices to formulate our theory.
Expressions of our metalanguage:
- sentences;
- names;
- functors.

Functors are expressions containing empty places (argument places) that can be filled in by some expressions of definite type (arguments). By filling in the empty places we gain a new expression of some definite type.

A metalanguage for formal languages

Metalanguage:

- A fragment of the communication language
- extended by some formal tools
that suffices to formulate our theory.
Expressions of our metalanguage:
- sentences;
- names;
- functors.

Functors are expressions containing empty places (argument places) that can be filled in by some expressions of definite type (arguments). By filling in the empty places we gain a new expression of some definite type.
I.e., it is assumed that there is one and only type assigned to each empty place of a functor.

A metalanguage for formal languages

Metalanguage:

- A fragment of the communication language
- extended by some formal tools
that suffices to formulate our theory.
Expressions of our metalanguage:
- sentences;
- names;
- functors.

Functors are expressions containing empty places (argument places) that can be filled in by some expressions of definite type (arguments). By filling in the empty places we gain a new expression of some definite type.
I.e., it is assumed that there is one and only type assigned to each empty place of a functor.
Or: a functor is an automaton taking expressions as inputs and producing another expression as the output.

Types (groups) of functors

Types (groups) of functors

A functor is called monadic, dyadic, ..., n-adic according to the number of the empty places.

Types (groups) of functors

A functor is called monadic, dyadic, ..., $\underline{n \text {-adic according to the }}$ number of the empty places.
A functor is homogeneous if the same type is assigned to each empty place.

A functor is called monadic, dyadic, $\ldots, \underline{n \text {-adic according to the }}$ number of the empty places.
A functor is homogeneous if the same type is assigned to each empty place.
Types (families) of homogeneous functors:

A functor is called monadic, dyadic $, \ldots, \underline{n \text {-adic }}$ according to the number of the empty places.
A functor is homogeneous if the same type is assigned to each empty place.
Types (families) of homogeneous functors:

- sentential functors take sentences as arguments and give a sentence;

A functor is called monadic, dyadic, $\ldots, \underline{n \text {-adic }}$ according to the number of the empty places.
A functor is homogeneous if the same type is assigned to each empty place.
Types (families) of homogeneous functors:

- sentential functors take sentences as arguments and give a sentence;
- name functors take names and give a name;

A functor is called monadic, dyadic, $\ldots, \underline{n \text {-adic }}$ according to the number of the empty places.
A functor is homogeneous if the same type is assigned to each empty place.
Types (families) of homogeneous functors:

- sentential functors take sentences as arguments and give a sentence;
- name functors take names and give a name;
- predicates take names and give a sentence.

A functor is called monadic, dyadic, $\ldots, \underline{n \text {-adic according to the }}$ number of the empty places.
A functor is homogeneous if the same type is assigned to each empty place.
Types (families) of homogeneous functors:

- sentential functors take sentences as arguments and give a sentence;
- name functors take names and give a name;
- predicates take names and give a sentence.

A special dyadic name functor: concatenation (\cap). If a and b are two strings, then $a^{\cap} b$ is the string beginning with a and continued by b.

A functor is called monadic, dyadic, $\ldots, \underline{n \text {-adic according to the }}$ number of the empty places.
A functor is homogeneous if the same type is assigned to each empty place.
Types (families) of homogeneous functors:

- sentential functors take sentences as arguments and give a sentence;
- name functors take names and give a name;
- predicates take names and give a sentence.

A special dyadic name functor: concatenation (\cap). If a and b are two strings, then $a^{\cap} b$ is the string beginning with a and continued by b.
A special dyadic predicate: identity. If a and b are strings, then $a=b$ is the sentence saying that a and b are the same string.

Logical tools I.: quantifiers and variables

Logical tools I.: quantifiers and variables

To express sentences containing expressions like 'every', 'each', some', etc. we use quantifiers and variables.

Logical tools I.: quantifiers and variables

To express sentences containing expressions like 'every', 'each', some', etc. we use quantifiers and variables.
Sentences of the form \ulcorner Every A is a $B\urcorner$ should be rewritten as
\ulcorner For every x, if x is an A, then x is a $B\urcorner$

Logical tools I.: quantifiers and variables

To express sentences containing expressions like 'every', 'each', some', etc. we use quantifiers and variables.
Sentences of the form \ulcorner Every A is a $B\urcorner$ should be rewritten as
\ulcorner For every x, if x is an A, then x is a $B\urcorner$
Abbreviation: $\ulcorner\bigwedge x($ if x is an A, then x is a $B)\urcorner$

Logical tools I.: quantifiers and variables

To express sentences containing expressions like 'every', 'each', some', etc. we use quantifiers and variables.
Sentences of the form \ulcorner Every A is a $B\urcorner$ should be rewritten as \ulcorner For every x, if x is an A, then x is a $B\urcorner$
Abbreviation: $\ulcorner\bigwedge x($ if x is an A, then x is a $B)\urcorner$
\ulcorner Some A is a $B\urcorner:\ulcorner\bigvee x(x$ is an A and x is a $B)\urcorner$.

Logical tools I.: quantifiers and variables

To express sentences containing expressions like 'every', 'each', some', etc. we use quantifiers and variables.
Sentences of the form \ulcorner Every A is a $B\urcorner$ should be rewritten as
\ulcorner For every x, if x is an A, then x is a $B\urcorner$
Abbreviation: $\ulcorner\bigwedge x($ if x is an A, then x is a $B)\urcorner$
\ulcorner Some A is a $B\urcorner:\ulcorner\bigvee x(x$ is an A and x is a $B)\urcorner$.
We have an unlimited number of variables.

Logical tools I.: quantifiers and variables

To express sentences containing expressions like 'every', 'each', some', etc. we use quantifiers and variables.
Sentences of the form \ulcorner Every A is a $B\urcorner$ should be rewritten as \ulcorner For every x, if x is an A, then x is a $B\urcorner$
Abbreviation: $\ulcorner\bigwedge x($ if x is an A, then x is a $B)\urcorner$
\ulcorner Some A is a $B\urcorner:\ulcorner\bigvee x(x$ is an A and x is a $B)\urcorner$.
We have an unlimited number of variables.
They can occur in sentences at any place where names can occur.

Logical tools I.: quantifiers and variables

To express sentences containing expressions like 'every', 'each', some', etc. we use quantifiers and variables.
Sentences of the form \ulcorner Every A is a $B\urcorner$ should be rewritten as
\ulcorner For every x, if x is an A, then x is a $B\urcorner$
Abbreviation: $\ulcorner\bigwedge x($ if x is an A, then x is a $B)\urcorner$
\ulcorner Some A is a $B\urcorner:\ulcorner\bigvee x(x$ is an A and x is a $B)\urcorner$.
We have an unlimited number of variables.
They can occur in sentences at any place where names can occur.
Plus: they can occur in quantifying expressions (QE-s) consisting of a quantifier (\bigvee or Λ) and a variable.

QE-s in general

QE-s in general

QE-s are monadic sentential functors. The argument of a QE is called its scope. The variable of a QE makes the occurrences in its scope bounded. Other occurrences are free.

QE-s in general

QE-s are monadic sentential functors. The argument of a QE is called its scope. The variable of a QE makes the occurrences in its scope bounded. Other occurrences are free.
Sentences containing no free variable occurrences are closed, other sentences are open. Names can be closed resp. open, too.

QE-s in general

QE-s are monadic sentential functors. The argument of a QE is called its scope. The variable of a QE makes the occurrences in its scope bounded. Other occurrences are free.
Sentences containing no free variable occurrences are closed, other sentences are open. Names can be closed resp. open, too.
$\bigwedge x A$ is true iff any substitution of the quotation name of a string for x into A gives a true sentence.

QE-s in general

QE-s are monadic sentential functors. The argument of a QE is called its scope. The variable of a QE makes the occurrences in its scope bounded. Other occurrences are free.
Sentences containing no free variable occurrences are closed, other sentences are open. Names can be closed resp. open, too.
$\bigwedge x A$ is true iff any substitution of the quotation name of a string for x into A gives a true sentence.
$\bigvee x A$ is true iff at least one substitution of the quotation name of a string for x into A gives a true sentence.

QE-s in general

QE-s are monadic sentential functors. The argument of a QE is called its scope. The variable of a QE makes the occurrences in its scope bounded. Other occurrences are free.
Sentences containing no free variable occurrences are closed, other sentences are open. Names can be closed resp. open, too.
$\bigwedge x A$ is true iff any substitution of the quotation name of a string for x into A gives a true sentence.
$\bigvee x A$ is true iff at least one substitution of the quotation name of a string for x into A gives a true sentence.
The intended universe of this metalanguage is the class of finite strings of letters of some finite alphabet. Quantification is defined by substitution and by this, we are not committed to the existence of some set-theoretic universe built on this class.

Logical tools 2.: Logical sentential functors

Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors of the metalanguage (A and B are sentences of the metalanguage):

Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors of the metalanguage (A and B are sentences of the metalanguage):

- $\neg A$ for $\ulcorner\mathrm{It}$ is not true that $A\urcorner$;

Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors of the metalanguage (A and B are sentences of the metalanguage):

- $\neg A$ for $\ulcorner\mathrm{It}$ is not true that $A\urcorner$;
- $A \wedge B$ for $\ulcorner A$ and $B\urcorner$;

Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors of the metalanguage (A and B are sentences of the metalanguage):

- $\neg A$ for $\ulcorner\mathrm{It}$ is not true that $A\urcorner$;
- $A \wedge B$ for $\ulcorner A$ and $B\urcorner$;
- $A \vee B$ for $\ulcorner A$ or $B\urcorner$;

Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors of the metalanguage (A and B are sentences of the metalanguage):

- $\neg A$ for $\ulcorner\mathrm{It}$ is not true that $A\urcorner$;
- $A \wedge B$ for $\ulcorner A$ and $B\urcorner$;
- $A \vee B$ for $\ulcorner A$ or $B\urcorner$;
- $A \Rightarrow B$ for \ulcorner If A, then $B\urcorner$;

Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors of the metalanguage (A and B are sentences of the metalanguage):

- $\neg A$ for $\ulcorner\mathrm{It}$ is not true that $A\urcorner$;
- $A \wedge B$ for $\ulcorner A$ and $B\urcorner$;
- $A \vee B$ for $\ulcorner A$ or $B\urcorner$;
- $A \Rightarrow B$ for \ulcorner If A, then $B\urcorner$;
- $A \Leftrightarrow B$ for $\ulcorner A$ if and only if $B\urcorner$.

Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors of the metalanguage (A and B are sentences of the metalanguage):

- $\neg A$ for $\ulcorner\mathrm{It}$ is not true that $A\urcorner$;
- $A \wedge B$ for $\ulcorner A$ and $B\urcorner$;
- $A \vee B$ for $\ulcorner A$ or $B\urcorner$;
- $A \Rightarrow B$ for \ulcorner If A, then $B\urcorner$;
- $A \Leftrightarrow B$ for $\ulcorner A$ if and only if $B\urcorner$.

If you studied classical propositional logic, use the truth conditions learned there for such sentences.

Quotations and quasi-quotations

Quotations and quasi-quotations

The quotation name of an expression $a_{1} a_{2} \ldots a_{n}$ is the expression we get by putting the expression to be named between the quotation marks 'and '. Quotation names are constant names, so it makes no sense to quantify for the letters occurring in them. It makes sense to say that 'Lucy' is the name of a pretty girl but it is nonsense to say that for every y, 'Lucy' is the name of a pretty girl.

Quotations and quasi-quotations

The quotation name of an expression $a_{1} a_{2} \ldots a_{n}$ is the expression we get by putting the expression to be named between the quotation marks ' and '. Quotation names are constant names, so it makes no sense to quantify for the letters occurring in them. It makes sense to say that 'Lucy' is the name of a pretty girl but it is nonsense to say that for every y, 'Lucy' is the name of a pretty girl.
The quasi-quotation marks \ulcorner and \urcorner delimit schemes of metalanguage expressions where some schematic letters (A, B, C, \ldots) occur which can be substituted by expressions of some certain (declared) type. The items on the previous slide should be understood as e.g. for each sentence A and B, the string resulting from the concatenation of A, the sign ' \wedge ' and B is a sentence again. So, distinctly from the common quotation marks, it is possible to quantify into the expressions delimited by quasi-quotation marks from the outside. It is important again that this quantification should be interpreted by substitution.

Class notation

Class notation

Instead of saying that a string a has the property F we say that a is a member of the class of F-s.

Class notation

Instead of saying that a string a has the property F we say that a is a member of the class of F-s.
If $\varphi(x)$ is a sentence with the single free variable x, then the symbol $\{x: \varphi(x)\}$ is a class abstraction and may be (loosely) read as \ulcorner the class of φ-s \urcorner.

Class notation

Instead of saying that a string a has the property F we say that a is a member of the class of F-s.
If $\varphi(x)$ is a sentence with the single free variable x, then the symbol $\{x: \varphi(x)\}$ is a class abstraction and may be (loosely) read as \ulcorner the class of φ-s \urcorner.
More exactly, the sentence $\ulcorner a$ is a member of $\{x: \varphi(x)\}\urcorner$ means that the sentence resulting from $\varphi(x)$ by the substitution of the individual term a for the free occurrences of x (expressed as $\varphi(a))$ is true.

Class notation

Instead of saying that a string a has the property F we say that a is a member of the class of F-s.
If $\varphi(x)$ is a sentence with the single free variable x, then the symbol $\{x: \varphi(x)\}$ is a class abstraction and may be (loosely) read as 「the class of φ-s \urcorner.
More exactly, the sentence $\ulcorner a$ is a member of $\{x: \varphi(x)\}\urcorner$ means that the sentence resulting from $\varphi(x)$ by the substitution of the individual term a for the free occurrences of x (expressed as $\varphi(a)$) is true.
We use capital letters as metalanguage variables for class abstractions and the symbol ' \in ' as an abbreviation for 'is a member of'.

Class notation

Instead of saying that a string a has the property F we say that a is a member of the class of F-s.

If $\varphi(x)$ is a sentence with the single free variable x, then the symbol $\{x: \varphi(x)\}$ is a class abstraction and may be (loosely) read as 「the class of φ-s \urcorner.
More exactly, the sentence $\ulcorner a$ is a member of $\{x: \varphi(x)\}\urcorner$ means that the sentence resulting from $\varphi(x)$ by the substitution of the individual term a for the free occurrences of x (expressed as $\varphi(a)$) is true.
We use capital letters as metalanguage variables for class abstractions and the symbol ' \in ' as an abbreviation for 'is a member of'.

Some trivial notational conventions:

Class notation

Instead of saying that a string a has the property F we say that a is a member of the class of F-s.
If $\varphi(x)$ is a sentence with the single free variable x, then the symbol $\{x: \varphi(x)\}$ is a class abstraction and may be (loosely) read as 「the class of φ-s \urcorner.
More exactly, the sentence $\ulcorner a$ is a member of $\{x: \varphi(x)\}\urcorner$ means that the sentence resulting from $\varphi(x)$ by the substitution of the individual term a for the free occurrences of x (expressed as $\varphi(a)$) is true.
We use capital letters as metalanguage variables for class abstractions and the symbol ' \in ' as an abbreviation for 'is a member of'.

Some trivial notational conventions:

- $a \notin A$

Class notation

Instead of saying that a string a has the property F we say that a is a member of the class of F-s.
If $\varphi(x)$ is a sentence with the single free variable x, then the symbol $\{x: \varphi(x)\}$ is a class abstraction and may be (loosely) read as 「the class of φ-s \urcorner.
More exactly, the sentence $\ulcorner a$ is a member of $\{x: \varphi(x)\}\urcorner$ means that the sentence resulting from $\varphi(x)$ by the substitution of the individual term a for the free occurrences of x (expressed as $\varphi(a)$) is true.
We use capital letters as metalanguage variables for class abstractions and the symbol ' \in ' as an abbreviation for 'is a member of'.

Some trivial notational conventions:

- $a \notin A$
- $a_{1}, a_{2}, \ldots a_{n} \in A$

Class notation

Instead of saying that a string a has the property F we say that a is a member of the class of F-s.
If $\varphi(x)$ is a sentence with the single free variable x, then the symbol $\{x: \varphi(x)\}$ is a class abstraction and may be (loosely) read as 「the class of φ-s \urcorner.
More exactly, the sentence $\ulcorner a$ is a member of $\{x: \varphi(x)\}\urcorner$ means that the sentence resulting from $\varphi(x)$ by the substitution of the individual term a for the free occurrences of x (expressed as $\varphi(a)$) is true.
We use capital letters as metalanguage variables for class abstractions and the symbol ' \in ' as an abbreviation for 'is a member of'.

Some trivial notational conventions:

- $a \notin A$
- $a_{1}, a_{2}, \ldots a_{n} \in A$
- $\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$

Class relations, operations, etc.

Class relations, operations, etc.

$$
A \subseteq B \Leftrightarrow_{D f} \bigwedge x(x \in A \Rightarrow x \in B)
$$

(Subset)

Class relations, operations, etc.

$$
\begin{array}{r}
A \subseteq B \Leftrightarrow_{D f} \bigwedge x(x \in A \Rightarrow x \in B) \\
A=B \Leftrightarrow_{D f}(A \subseteq B \wedge B \subseteq A)
\end{array}
$$

(Subset)
(Class identity)

Class relations, operations, etc.

$$
\begin{array}{rr}
A \subseteq B \Leftrightarrow_{D f} \bigwedge x(x \in A \Rightarrow x \in B) & \text { (Subset) } \\
A=B \Leftrightarrow_{D f}(A \subseteq B \wedge B \subseteq A) & \text { (Class identity) } \\
A \subset B \Leftrightarrow_{D f}(A \subseteq B \wedge A \neq B) & \text { (Proper subclass) }
\end{array}
$$

Class relations, operations, etc.

$$
\begin{array}{rr}
A \subseteq B \Leftrightarrow_{D f} \bigwedge x(x \in A \Rightarrow x \in B) & \text { (Subset) } \\
A=B \Leftrightarrow_{D f}(A \subseteq B \wedge B \subseteq A) & \text { (Class identity) } \\
A \subset B \Leftrightarrow_{D f}(A \subseteq B \wedge A \neq B) & \text { (Proper subclass) } \\
\emptyset=_{D f}\{x: x \neq x\} & \text { (Empty class) }
\end{array}
$$

Class relations, operations, etc.

$$
\begin{array}{rr}
A \subseteq B \Leftrightarrow_{D f} \bigwedge x(x \in A \Rightarrow x \in B) & \text { (Subset) } \\
A=B \Leftrightarrow_{D f}(A \subseteq B \wedge B \subseteq A) & \text { (Class identity) } \\
A \subset B \Leftrightarrow_{D f}(A \subseteq B \wedge A \neq B) & \text { (Proper subclass) } \\
\emptyset=D f\{x: x \neq x\} & \text { (Empty class) } \\
A \cup B=_{D f}\{x: x \in A \vee x \in B\} & \text { (Union) }
\end{array}
$$

Class relations, operations, etc.

$$
\begin{array}{rr}
A \subseteq B \Leftrightarrow_{D f} \bigwedge x(x \in A \Rightarrow x \in B) & \text { (Subset) } \\
A=B \Leftrightarrow_{D f}(A \subseteq B \wedge B \subseteq A) & \text { (Class identity) } \\
A \subset B \Leftrightarrow_{D f}(A \subseteq B \wedge A \neq B) & \text { (Proper subclass) } \\
\emptyset==_{D f}\{x: x \neq x\} & \text { (Empty class) } \\
A \cup B=_{D f}\{x: x \in A \vee x \in B\} & \text { (Union) } \\
A \cap B=_{D f}\{x: x \in A \wedge x \in B\} & \text { (Intersection) }
\end{array}
$$

Class relations, operations, etc.

$$
\begin{array}{r}
A \subseteq B \Leftrightarrow_{D f} \bigwedge x(x \in A \Rightarrow x \in B) \\
A=B \Leftrightarrow_{D f}(A \subseteq B \wedge B \subseteq A) \\
A \subset B \Leftrightarrow_{D f}(A \subseteq B \wedge A \neq B) \\
\emptyset=D_{D f}\{x: x \neq x\} \\
A \cup B=_{D f}\{x: x \in A \vee x \in B\} \\
A \cap B==_{D f}\{x: x \in A \wedge x \in B\} \\
A-B==_{D f}\{x: x \in A \wedge x \notin B\}
\end{array}
$$

(Subset)
(Class identity)
(Proper subclass)
(Empty class)
(Union)
(Intersection)
(Difference)

Class relations, operations, etc.

$$
\begin{array}{r}
A \subseteq B \Leftrightarrow_{D f} \bigwedge x(x \in A \Rightarrow x \in B) \\
A=B \Leftrightarrow_{D f}(A \subseteq B \wedge B \subseteq A) \\
A \subset B \Leftrightarrow_{D f}(A \subseteq B \wedge A \neq B) \\
\emptyset=B \cup B==_{D f}\{x: x \in A \vee x \in B\} \\
A \cap B==_{D f}\{x: x \in A \wedge x \in B\} \\
A-B==_{D f}\{x: x \in A \wedge x \notin B\}
\end{array}
$$

(Subset)
(Class identity)
(Proper subclass)
(Empty class)
(Union)
(Intersection)
(Difference)
A is disjoint from $B \Longleftrightarrow{ }_{D f} A \cap B=\emptyset$

Language radices

Language radices

A language is characterized:

Language radices

A language is characterized:
(1) By its alphabet, i.e. a finite collection \mathcal{A} of objects called letters;

Language radices

A language is characterized:
(1) By its alphabet, i.e. a finite collection \mathcal{A} of objects called letters;
(2) By the set \mathcal{A}° of its strings or words;

Language radices

A language is characterized:
(1) By its alphabet, i.e. a finite collection \mathcal{A} of objects called letters;
(2) By the set \mathcal{A}° of its strings or words;
(3) By the operation ${ }^{\cap}$ of concatenation over the strings;

Language radices

A language is characterized:
(1) By its alphabet, i.e. a finite collection \mathcal{A} of objects called letters;
(2) By the set \mathcal{A}° of its strings or words;
(3) By the operation ${ }^{\cap}$ of concatenation over the strings;
(1) By the fact that there is a neutral element for the operation of concatenation: the empty word \varnothing;

Language radices

A language is characterized:
(1) By its alphabet, i.e. a finite collection \mathcal{A} of objects called letters;
(2) By the set \mathcal{A}° of its strings or words;
(3) By the operation ${ }^{\cap}$ of concatenation over the strings;
(1) By the fact that there is a neutral element for the operation of concatenation: the empty word \varnothing;
(0) By various classes of strings regarded as categories of meaningful expressions.

Language radices

A language is characterized:
(1) By its alphabet, i.e. a finite collection \mathcal{A} of objects called letters;
(2) By the set \mathcal{A}° of its strings or words;
(3) By the operation ${ }^{\cap}$ of concatenation over the strings;
(1) By the fact that there is a neutral element for the operation of concatenation: the empty word \varnothing;
(6) By various classes of strings regarded as categories of meaningful expressions.
The first four items are together the radix of the language. We want to describe it axiomatically because we don't want to refer to set theory for making precise the concepts (finiteness etc.) used in the above enumeration.

Axioms for language radices

Axioms for language radices

$$
\begin{equation*}
\mathcal{A} \subseteq \mathcal{A}^{\circ} \text { and } \varnothing \in \mathcal{A}^{\circ} \tag{R1}
\end{equation*}
$$

Axioms for language radices

$$
\begin{align*}
& \mathcal{A} \subseteq \mathcal{A}^{\circ} \text { and } \varnothing \in \mathcal{A}^{\circ} \tag{R1}\\
& x, y \in \mathcal{A}^{\circ} \Rightarrow x^{\cap} y \in \mathcal{A}^{\circ}
\end{align*}
$$

(R2)

Axioms for language radices

$$
\begin{gather*}
\mathcal{A} \subseteq \mathcal{A}^{\circ} \text { and } \varnothing \in \mathcal{A}^{\circ} \tag{R1}\\
x, y \in \mathcal{A}^{\circ} \Rightarrow x^{\cap} y \in \mathcal{A}^{\circ} \tag{R2}\\
x, y, z \in \mathcal{A}^{\circ} \Rightarrow\left(x^{\cap} y\right)^{\cap} z=x^{\cap}\left(y^{\cap} z\right) \tag{R3}
\end{gather*}
$$

Axioms for language radices

$$
\begin{gather*}
\mathcal{A} \subseteq \mathcal{A}^{\circ} \text { and } \varnothing \in \mathcal{A}^{\circ} \tag{R1}\\
x, y \in \mathcal{A}^{\circ} \Rightarrow x^{\cap} y \in \mathcal{A}^{\circ} \tag{R2}\\
x, y, z \in \mathcal{A}^{\circ} \Rightarrow\left(x^{\cap} y\right)^{\cap} z=x^{\cap}\left(y^{\cap} z\right) \tag{R3}
\end{gather*}
$$

Let us leave the antecedent $x(, y$, etc. $) \in \mathcal{A}^{\circ}$; Latin letters are always variables for strings.

Axioms for language radices

$$
\begin{gather*}
\mathcal{A} \subseteq \mathcal{A}^{\circ} \text { and } \varnothing \in \mathcal{A}^{\circ} \tag{R1}\\
x, y \in \mathcal{A}^{\circ} \Rightarrow x^{\cap} y \in \mathcal{A}^{\circ} \tag{R2}\\
x, y, z \in \mathcal{A}^{\circ} \Rightarrow\left(x^{\cap} y\right)^{\cap} z=x^{\cap}\left(y^{\cap} z\right) \tag{R3}
\end{gather*}
$$

Let us leave the antecedent $x(, y$, etc. $) \in \mathcal{A}^{\circ}$; Latin letters are always variables for strings.

$$
\begin{gather*}
x \neq \varnothing \Leftrightarrow \bigvee y \bigvee \alpha\left(\alpha \in \mathcal{A} \wedge x=y^{\cap} \alpha\right) \tag{R4}\\
\left(\alpha, \beta \in \mathcal{A} \wedge x^{\cap} \alpha=y^{\cap} \beta\right) \Rightarrow(x=y \wedge \alpha=\beta) \tag{R5}
\end{gather*}
$$

Axioms for language radices

$$
\begin{gather*}
\mathcal{A} \subseteq \mathcal{A}^{\circ} \text { and } \varnothing \in \mathcal{A}^{\circ} \tag{R1}\\
x, y \in \mathcal{A}^{\circ} \Rightarrow x^{\cap} y \in \mathcal{A}^{\circ} \tag{R2}\\
x, y, z \in \mathcal{A}^{\circ} \Rightarrow\left(x^{\cap} y\right)^{\cap} z=x^{\cap}\left(y^{\cap} z\right) \tag{R3}
\end{gather*}
$$

Let us leave the antecedent $x(, y$, etc. $) \in \mathcal{A}^{\circ}$; Latin letters are always variables for strings.

$$
\begin{gather*}
x \neq \varnothing \Leftrightarrow \bigvee y \bigvee \alpha\left(\alpha \in \mathcal{A} \wedge x=y^{\cap} \alpha\right) \tag{R4}\\
\left(\alpha, \beta \in \mathcal{A} \wedge x^{\cap} \alpha=y^{\cap} \beta\right) \Rightarrow(x=y \wedge \alpha=\beta) \tag{R5}\\
\left(x^{\cap} y=x \Leftrightarrow y=\varnothing\right) \wedge\left(\left(x^{\cap} y=y \Leftrightarrow x=\varnothing\right)\right) \tag{R6}
\end{gather*}
$$

Axioms for language radices

$$
\begin{gather*}
\mathcal{A} \subseteq \mathcal{A}^{\circ} \text { and } \varnothing \in \mathcal{A}^{\circ} \tag{R1}\\
x, y \in \mathcal{A}^{\circ} \Rightarrow x^{\cap} y \in \mathcal{A}^{\circ} \tag{R2}\\
x, y, z \in \mathcal{A}^{\circ} \Rightarrow\left(x^{\cap} y\right)^{\cap} z=x^{\cap}\left(y^{\cap} z\right) \tag{R3}
\end{gather*}
$$

Let us leave the antecedent $x(, y$, etc. $) \in \mathcal{A}^{\circ}$; Latin letters are always variables for strings.

$$
\begin{gather*}
x \neq \varnothing \Leftrightarrow \bigvee y \bigvee \alpha\left(\alpha \in \mathcal{A} \wedge x=y^{\cap} \alpha\right) \tag{R4}\\
\left(\alpha, \beta \in \mathcal{A} \wedge x^{\cap} \alpha=y^{\cap} \beta\right) \Rightarrow(x=y \wedge \alpha=\beta) \tag{R5}\\
\left(x^{\cap} y=x \Leftrightarrow y=\varnothing\right) \wedge\left(\left(x^{\cap} y=y \Leftrightarrow x=\varnothing\right)\right) \tag{R6}
\end{gather*}
$$

That's all.

