Metalogic

Spring Semester 2023

Andras Maté

E6tvos Lorand University Budapest
Institute of Philosophy, Department of Logic
mate.andras53@gmail.com

03.02.2023

Andras Maté metalogic 03. March



metalogic 03. M



General

@ Source (= textbook):
Ruzsa, 1., Introduction to Metalogic. Budapest: Aron
Publishers, 1997.

Andras Maté metalogic 03. March



General

@ Source (= textbook):
Ruzsa, 1., Introduction to Metalogic. Budapest: Aron
Publishers, 1997.
o Necessary preliminary knowledge:
In principle: nothing.
In practice: the language of first-order logic/set theory.

Andras Maté metalogic 03. March



General

@ Source (= textbook):
Ruzsa, 1., Introduction to Metalogic. Budapest: Aron
Publishers, 1997.

o Necessary preliminary knowledge:

In principle: nothing.

In practice: the language of first-order logic/set theory.
@ Method: lecture + solving problems.

Andras Maté metalogic 03. March



General

@ Source (= textbook):
Ruzsa, 1., Introduction to Metalogic. Budapest: Aron
Publishers, 1997.

o Necessary preliminary knowledge:

In principle: nothing.

In practice: the language of first-order logic/set theory.
@ Method: lecture + solving problems.

e Evaluation: solving problems (during the classes or in the
exam period).

Andras Maté metalogic 03. March



General

@ Source (= textbook):
Ruzsa, 1., Introduction to Metalogic. Budapest: Aron
Publishers, 1997.

o Necessary preliminary knowledge:
In principle: nothing.
In practice: the language of first-order logic/set theory.

@ Method: lecture + solving problems.

e Evaluation: solving problems (during the classes or in the
exam period).

o Webpage:
http://phil.elte.hu/mate/metalogic/metalogic.html.
Presentations (pdf-s) will be published after the classes.

Andras Maté metalogic 03. March



What is this?

metalogic 03. March



What is this?

Metalogic: Logical theory of logical theories (+ theories
formalized in logic).

Andras Maté metalogic 03. March



What is this?

Metalogic: Logical theory of logical theories (+ theories
formalized in logic).

Metalogical theorems: deductive completeness, algorithmic
undecidability of first order logic; negation-incompleteness of
first-order Peano arithmetic, etc.

Andras Maté metalogic 03. March



What is this?

Metalogic: Logical theory of logical theories (+ theories
formalized in logic).

Metalogical theorems: deductive completeness, algorithmic
undecidability of first order logic; negation-incompleteness of
first-order Peano arithmetic, etc.

Aim: build up a theory such that

Andras Maté metalogic 03. March



What is this?

Metalogic: Logical theory of logical theories (+ theories
formalized in logic).

Metalogical theorems: deductive completeness, algorithmic
undecidability of first order logic; negation-incompleteness of
first-order Peano arithmetic, etc.

Aim: build up a theory such that

@ it proves such theorems in an abstract form (i. e., about a
large family of theories) and in an unique framework.

Andras Maté metalogic 03. March



What is this?

Metalogic: Logical theory of logical theories (+ theories
formalized in logic).

Metalogical theorems: deductive completeness, algorithmic
undecidability of first order logic; negation-incompleteness of
first-order Peano arithmetic, etc.

Aim: build up a theory such that

@ it proves such theorems in an abstract form (i. e., about a
large family of theories) and in an unique framework.

@ it can serve as a foundation of other logical theories: it
doesn’t use them and it gives a clear account about its
presuppositions.

Andras Maté metalogic 03. March



What is this?

Metalogic: Logical theory of logical theories (+ theories
formalized in logic).
Metalogical theorems: deductive completeness, algorithmic
undecidability of first order logic; negation-incompleteness of
first-order Peano arithmetic, etc.
Aim: build up a theory such that
@ it proves such theorems in an abstract form (i. e., about a
large family of theories) and in an unique framework.
@ it can serve as a foundation of other logical theories: it
doesn’t use them and it gives a clear account about its
presuppositions.

Our theory: that of canonical calculi (including Markov
algorithms).

Andras Maté metalogic 03. March



What is this?

Metalogic: Logical theory of logical theories (+ theories
formalized in logic).

Metalogical theorems: deductive completeness, algorithmic
undecidability of first order logic; negation-incompleteness of
first-order Peano arithmetic, etc.

Aim: build up a theory such that

@ it proves such theorems in an abstract form (i. e., about a
large family of theories) and in an unique framework.

@ it can serve as a foundation of other logical theories: it
doesn’t use them and it gives a clear account about its
presuppositions.

Our theory: that of canonical calculi (including Markov
algorithms).

Circularity- (‘hen and egg’-)problem in foundations: the relation
between syntax (proof theory) and semantics (set theory).

Andras Maté metalogic 03. March



A metalanguage for formal languages

Metalanguage:

Andras Maté metalogic 03. March



A metalanguage for formal languages

Metalanguage:

o A fragment of the communication language

Andras Maté metalogic 03. March



A metalanguage for formal languages

Metalanguage:
o A fragment of the communication language

o extended by some formal tools

Andras Maté metalogic 03. March



A metalanguage for formal languages

Metalanguage:
o A fragment of the communication language
o extended by some formal tools

that suffices to formulate our theory.

Andras Maté metalogic 03. March



A metalanguage for formal languages

Metalanguage:
o A fragment of the communication language
o extended by some formal tools

that suffices to formulate our theory.
Expressions of our metalanguage:

Andras Maté metalogic 03. March



A metalanguage for formal languages

Metalanguage:
o A fragment of the communication language
o extended by some formal tools

that suffices to formulate our theory.
Expressions of our metalanguage:

@ sentences;

Andras Maté metalogic 03. March



A metalanguage for formal languages

Metalanguage:
o A fragment of the communication language
o extended by some formal tools

that suffices to formulate our theory.
Expressions of our metalanguage:

@ sentences;

@ names;

Andras Maté metalogic 03. March



A metalanguage for formal languages

Metalanguage:
o A fragment of the communication language
o extended by some formal tools

that suffices to formulate our theory.
Expressions of our metalanguage:

@ sentences;
@ names;

o functors.

Andras Maté metalogic 03. March



A metalanguage for formal languages

Metalanguage:
o A fragment of the communication language
o extended by some formal tools

that suffices to formulate our theory.
Expressions of our metalanguage:

@ sentences;
@ names;
o functors.

Functors are expressions containing empty places (argument
places) that can be filled in by some expressions of definite type
(arguments). By filling in the empty places we gain a new
expression of some definite type.

Andras Maté metalogic 03. March



A metalanguage for formal languages

Metalanguage:
o A fragment of the communication language
o extended by some formal tools

that suffices to formulate our theory.
Expressions of our metalanguage:

@ sentences;

@ names;

e functors.
Functors are expressions containing empty places (argument
places) that can be filled in by some expressions of definite type
(arguments). By filling in the empty places we gain a new
expression of some definite type.

Le., it is assumed that there is one and only type assigned to
each empty place of a functor.

Andras Maté metalogic 03. March



A metalanguage for formal languages

Metalanguage:

o A fragment of the communication language

o extended by some formal tools
that suffices to formulate our theory.
Expressions of our metalanguage:

@ sentences;

@ names;

e functors.
Functors are expressions containing empty places (argument
places) that can be filled in by some expressions of definite type
(arguments). By filling in the empty places we gain a new
expression of some definite type.
Le., it is assumed that there is one and only type assigned to
each empty place of a functor.

Or: a functor is an automaton taking expressions as inputs and
producing another expression as the output.

Andras Maté metalogic 03. March



Types (groups) of functors

Andras Maté metalogic 03. March



Types (groups) of functors

A functor is called monadic, dyadic, ..., n-adic according to the
number of the empty places.

Andras Maté metalogic 03. March



Types (groups) of functors

A functor is called monadic, dyadic, ..., n-adic according to the
number of the empty places.

A functor is homogeneous if the same type is assigned to each
empty place.

Andras Maté metalogic 03. March



Types (groups) of functors

A functor is called monadic, dyadic, ..., n-adic according to the
number of the empty places.

A functor is homogeneous if the same type is assigned to each
empty place.

Types (families) of homogeneous functors:

Andras Maté metalogic 03. March



Types (groups) of functors

A functor is called monadic, dyadic, ..., n-adic according to the
number of the empty places.

A functor is homogeneous if the same type is assigned to each
empty place.

Types (families) of homogeneous functors:

@ sentential functors take sentences as arguments and give a
sentence;

Andras Maté metalogic 03. March



Types (groups) of functors

A functor is called monadic, dyadic, ..., n-adic according to the
number of the empty places.

A functor is homogeneous if the same type is assigned to each
empty place.

Types (families) of homogeneous functors:

@ sentential functors take sentences as arguments and give a
sentence;

o name functors take names and give a name;

Andras Maté metalogic 03. March



Types (groups) of functors

A functor is called monadic, dyadic, ..., n-adic according to the
number of the empty places.

A functor is homogeneous if the same type is assigned to each
empty place.

Types (families) of homogeneous functors:

@ sentential functors take sentences as arguments and give a
sentence;

o name functors take names and give a name;

o predicates take names and give a sentence.

Andras Maté metalogic 03. March



Types (groups) of functors

A functor is called monadic, dyadic, ..., n-adic according to the
number of the empty places.

A functor is homogeneous if the same type is assigned to each
empty place.

Types (families) of homogeneous functors:

@ sentential functors take sentences as arguments and give a
sentence;

o name functors take names and give a name;
o predicates take names and give a sentence.

A special dyadic name functor: concatenation (). If a and b are
two strings, then a"'b is the string beginning with a and
continued by b.

Andras Maté metalogic 03. March



Types (groups) of functors

A functor is called monadic, dyadic, ..., n-adic according to the
number of the empty places.

A functor is homogeneous if the same type is assigned to each
empty place.

Types (families) of homogeneous functors:

@ sentential functors take sentences as arguments and give a
sentence;

o name functors take names and give a name;
o predicates take names and give a sentence.

A special dyadic name functor: concatenation (). If a and b are
two strings, then a"'b is the string beginning with a and
continued by b.

A special dyadic predicate: identity. If @ and b are strings, then
a = b is the sentence saying that a and b are the same string.

Andras Maté metalogic 03. March



Logical tools I.: quantifiers and variables

Andras Maté metalogic 03. March



Logical tools I.: quantifiers and variables

To express sentences containing expressions like ‘every’, ‘each’,
some’, etc. we use quantifiers and variables.

metalogic 03. March



Logical tools I.: quantifiers and variables

To express sentences containing expressions like ‘every’, ‘each’,
some’, etc. we use quantifiers and variables.

Sentences of the form "Every A is a B should be rewritten as
TFor every z, if z is an A, then z is a B™

metalogic 03. March



Logical tools I.: quantifiers and variables

To express sentences containing expressions like ‘every’, ‘each’,
some’, etc. we use quantifiers and variables.

Sentences of the form "Every A is a B should be rewritten as
TFor every z, if z is an A, then z is a B™

Abbreviation: " A z(if = is an A, then z is a B)~

metalogic 03. March



Logical tools I.: quantifiers and variables

To express sentences containing expressions like ‘every’, ‘each’,
some’, etc. we use quantifiers and variables.

Sentences of the form "Every A is a B should be rewritten as
TFor every z, if z is an A, then z is a B™

Abbreviation: " A z(if = is an A, then z is a B)~

"Some Aisa B™: "\/z(xrisan Aand zisa B)™.

metalogic 03. March



Logical tools I.: quantifiers and variables

To express sentences containing expressions like ‘every’, ‘each’,
some’, etc. we use quantifiers and variables.

Sentences of the form "Every A is a B should be rewritten as
TFor every z, if z is an A, then z is a B™

Abbreviation: " A z(if = is an A, then z is a B)~
"Some Aisa B™: "\/z(xrisan Aand zisa B)™.

We have an unlimited number of variables.

metalogic 03. March



Logical tools I.: quantifiers and variables

To express sentences containing expressions like ‘every’, ‘each’,
some’, etc. we use quantifiers and variables.

Sentences of the form "Every A is a B should be rewritten as
TFor every z, if z is an A, then z is a B™

Abbreviation: " A z(if = is an A, then z is a B)~
"Some Aisa B™: "\/z(xrisan Aand zisa B)™.
We have an unlimited number of variables.

They can occur in sentences at any place where names can
occur.

metalogic 03. March



Logical tools I.: quantifiers and variables

To express sentences containing expressions like ‘every’, ‘each’,
some’, etc. we use quantifiers and variables.

Sentences of the form "Every A is a B should be rewritten as
TFor every z, if z is an A, then z is a B™

Abbreviation: " A z(if = is an A, then z is a B)~

"Some Aisa B™: "\/z(xrisan Aand zisa B)™.

We have an unlimited number of variables.

They can occur in sentences at any place where names can
occur.

Plus: they can occur in quantifying expressions (QE-s)
consisting of a quantifier (\/ or A\) and a variable.

Andras Maté metalogic 03. March



QE-s in general

Andras Maté metalogic 03. March



QE-s in general

QE-s are monadic sentential functors. The argument of a QE is
called its scope. The variable of a QE makes the occurrences in
its scope bounded. Other occurrences are free.

metalogic 03. March



QE-s in general

QE-s are monadic sentential functors. The argument of a QE is
called its scope. The variable of a QE makes the occurrences in
its scope bounded. Other occurrences are free.

Sentences containing no free variable occurrences are closed,
other sentences are open. Names can be closed resp. open, too.

metalogic 03. March



QE-s in general

QE-s are monadic sentential functors. The argument of a QE is
called its scope. The variable of a QE makes the occurrences in
its scope bounded. Other occurrences are free.

Sentences containing no free variable occurrences are closed,
other sentences are open. Names can be closed resp. open, too.

A\ xA is true iff any substitution of the quotation name of a
string for = into A gives a true sentence.

metalogic 03. March



QE-s in general

QE-s are monadic sentential functors. The argument of a QE is
called its scope. The variable of a QE makes the occurrences in
its scope bounded. Other occurrences are free.

Sentences containing no free variable occurrences are closed,
other sentences are open. Names can be closed resp. open, too.
A\ xA is true iff any substitution of the quotation name of a
string for = into A gives a true sentence.

\ zA is true iff at least one substitution of the quotation name
of a string for = into A gives a true sentence.

Andras Maté metalogic 03. March



QE-s in general

QE-s are monadic sentential functors. The argument of a QE is
called its scope. The variable of a QE makes the occurrences in
its scope bounded. Other occurrences are free.

Sentences containing no free variable occurrences are closed,
other sentences are open. Names can be closed resp. open, too.

A\ xA is true iff any substitution of the quotation name of a
string for = into A gives a true sentence.

\/ zA is true iff at least one substitution of the quotation name
of a string for = into A gives a true sentence.

The intended universe of this metalanguage is the class of finite
strings of letters of some finite alphabet. Quantification is
defined by substitution and by this, we are not committed to
the existence of some set-theoretic universe built on this class.

Andras Maté metalogic 03. March



Logical tools 2.: Logical sentential functors

Andras Maté metalogic 03. March



Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors
of the metalanguage (A and B are sentences of the
metalanguage):

Andras Maté metalogic 03. March



Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors
of the metalanguage (A and B are sentences of the
metalanguage):

o —A for "It is not true that A™;

Andras Maté metalogic 03. March



Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors
of the metalanguage (A and B are sentences of the
metalanguage):

o —A for "It is not true that A™;

e ANBfor"A and BT

Andras Maté metalogic 03. March



Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors
of the metalanguage (A and B are sentences of the
metalanguage):

o —A for "It is not true that A™;
e ANB for "A and B
e AVBfor"Aor BT

Andras Maté metalogic 03. March



Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors
of the metalanguage (A and B are sentences of the
metalanguage):

o —A for "It is not true that A™;
e ANB for "A and B

e AVBfor"Aor BT

o A= Bfor" If A, then BT,

Andras Maté metalogic 03. March



Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors
of the metalanguage (A and B are sentences of the
metalanguage):

o —A for "It is not true that A™;
e ANBfor"A and BT

o AV B for"Aor BT

A= Bfor" If A, then B,

o A< Bfor ™A if and only if B™.

(]

Andras Maté metalogic 03. March



Logical tools 2.: Logical sentential functors

We use the following abbreviations for some sentential functors
of the metalanguage (A and B are sentences of the
metalanguage):

o —A for "It is not true that A™;
e ANBfor"A and BT

o AV B for"Aor BT

o A= Bfor" If A, then BT,

o A< Bfor ™A if and only if B™.

If you studied classical propositional logic, use the truth
conditions learned there for such sentences.

Andras Maté metalogic 03. March



Quotations and quasi-quotations

metalogic 03. March



Quotations and quasi-quotations

The quotation name of an expression aias...a, is the
expression we get by putting the expression to be named
between the quotation marks ¢ and ’. Quotation names are
constant names, so it makes no sense to quantify for the letters
occurring in them. It makes sense to say that ‘Lucy’ is the name
of a pretty girl but it is nonsense to say that for every y, ‘Lucy’
is the name of a pretty girl.

Andras Maté metalogic 03. March



Quotations and quasi-quotations

The quotation name of an expression aias...a, is the
expression we get by putting the expression to be named
between the quotation marks ¢ and ’. Quotation names are
constant names, so it makes no sense to quantify for the letters
occurring in them. It makes sense to say that ‘Lucy’ is the name
of a pretty girl but it is nonsense to say that for every y, ‘Lucy’
is the name of a pretty girl.

The quasi-quotation marks " and 7' delimit schemes of
metalanguage expressions where some schematic letters

(A, B, C,...) occur which can be substituted by expressions of
some certain (declared) type. The items on the previous slide
should be understood as e.g. for each sentence A and B, the
string resulting from the concatenation of A, the sign ‘A’ and B
is a sentence again. So, distinctly from the common quotation
marks, it is possible to quantify into the expressions delimited
by quasi-quotation marks from the outside. It is important again
that this quantification should be interpreted by substitution.

Andras Maté metalogic 03. March



Class notation

Andras Maté metalogic 03. March



Class notation

Instead of saying that a string a has the property F' we say that
a is a member of the class of F-s.

Andras Maté metalogic 03. March



Class notation

Instead of saying that a string a has the property F' we say that
a is a member of the class of F-s.

If p(x) is a sentence with the single free variable x, then the

symbol {x : ¢(x)} is a class abstraction and may be (loosely)
read as "the class of p-s™.

Andras Maté metalogic 03. March



Class notation

Instead of saying that a string a has the property F' we say that
a is a member of the class of F-s.

If p(x) is a sentence with the single free variable x, then the
symbol {x : ¢(x)} is a class abstraction and may be (loosely)
read as "the class of p-s™.

More exactly, the sentence "a is a member of {z : p(z)}" means
that the sentence resulting from ¢(z) by the substitution of the
individual term a for the free occurrences of x (expressed as
p(a)) is true.

Andras Maté metalogic 03. March



Class notation

Instead of saying that a string a has the property F' we say that
a is a member of the class of F-s.

If p(x) is a sentence with the single free variable x, then the
symbol {x : ¢(x)} is a class abstraction and may be (loosely)
read as "the class of p-s™.

More exactly, the sentence "a is a member of {z : p(z)}" means
that the sentence resulting from ¢(z) by the substitution of the
individual term a for the free occurrences of x (expressed as
p(a)) is true.

We use capital letters as metalanguage variables for class
abstractions and the symbol ‘€’ as an abbreviation for ‘is a
member of’.

Andras Maté metalogic 03. March



Class notation

Instead of saying that a string a has the property F' we say that
a is a member of the class of F-s.

If p(x) is a sentence with the single free variable x, then the
symbol {x : ¢(x)} is a class abstraction and may be (loosely)
read as "the class of p-s™.

More exactly, the sentence "a is a member of {z : p(z)}" means
that the sentence resulting from ¢(z) by the substitution of the
individual term a for the free occurrences of x (expressed as
p(a)) is true.

We use capital letters as metalanguage variables for class
abstractions and the symbol ‘€’ as an abbreviation for ‘is a
member of’.

Some trivial notational conventions:

Andras Maté metalogic 03. March



Class notation

Instead of saying that a string a has the property F' we say that
a is a member of the class of F-s.

If p(x) is a sentence with the single free variable x, then the
symbol {x : ¢(x)} is a class abstraction and may be (loosely)
read as "the class of p-s™.

More exactly, the sentence "a is a member of {z : p(z)}" means
that the sentence resulting from ¢(z) by the substitution of the
individual term a for the free occurrences of x (expressed as
p(a)) is true.

We use capital letters as metalanguage variables for class
abstractions and the symbol ‘€’ as an abbreviation for ‘is a
member of’.

Some trivial notational conventions:

eag¢ A

Andras Maté metalogic 03. March



Class notation

Instead of saying that a string a has the property F' we say that
a is a member of the class of F-s.

If p(x) is a sentence with the single free variable x, then the
symbol {x : ¢(x)} is a class abstraction and may be (loosely)
read as "the class of p-s™.

More exactly, the sentence "a is a member of {z : p(z)}" means
that the sentence resulting from ¢(z) by the substitution of the
individual term a for the free occurrences of x (expressed as
p(a)) is true.
We use capital letters as metalanguage variables for class
abstractions and the symbol ‘€’ as an abbreviation for ‘is a
member of’.
Some trivial notational conventions:

eag¢ A

@ ay, as, ...a, € A

Andras Maté metalogic 03. March



Class notation

Instead of saying that a string a has the property F' we say that
a is a member of the class of F-s.

If p(x) is a sentence with the single free variable x, then the
symbol {x : ¢(x)} is a class abstraction and may be (loosely)
read as "the class of p-s™.

More exactly, the sentence "a is a member of {z : p(z)}" means
that the sentence resulting from ¢(z) by the substitution of the
individual term a for the free occurrences of x (expressed as
p(a)) is true.

We use capital letters as metalanguage variables for class
abstractions and the symbol ‘€’ as an abbreviation for ‘is a
member of’.

Some trivial notational conventions:

eag¢ A
@ ay, as, ...a, € A
o {ay, ag, ...an}

Andras Maté metalogic 03. March



Class relations, operations, etc.

metalogic 03. March



Class relations, operations, etc.

AC B &py /\x(ﬂzeA:>x€B) (Subset)

Andras Maté metalogic 03. March



Class relations, operations, etc.

AC B &py /\x(ﬂzeA:>x€B) (Subset)
A=B&pr(ACBABCA) (Class identity)

Andras Maté metalogic 03. March



Class relations, operations, etc.

AC B &py /\x(ﬂzeA:>x€B) (Subset)

A=B&pr(ACBABCA) (Class identity)
ACB&pr(ACBANA#B) (Proper subclass)

Andras Maté metalogic 03. March



Class relations, operations, etc.

AC B &py /\x(ﬂzeA:>x€B) (Subset)
A=B&pr(ACBABCA) (Class identity)
ACB&pr(ACBANA#B) (Proper subclass)

0=pf{z:z#a} (Empty class)

Andras Maté metalogic 03. March



Class relations, operations, etc.

AC B &py /\x(ﬂzeA:>x€B) (Subset)
A=B&pr(ACBABCA) (Class identity)
ACB&pr(ACBANA#B) (Proper subclass)

0=pf{z:z#a} (Empty class)
AUB=ps{z:x € AVz e B} (Union)

Andras Maté metalogic 03. March



Class relations, operations, etc.

A§B<:>Df/\x(ﬂseAz>x€B)

(Subset

A=B&pr(ACBABCA) (Class identity
ACB&pr(ACBANA#B) (Proper subclass
0=pf{z:z#a} (Empty class

AUB=ps{z:x € AVz e B}
ANB=ps{z:v € ANz € B}

Andras Maté metalogic 03. March

(Union

(Intersection

)
)
)
)
)
)




Class relations, operations, etc.

A§B<:>Df/\x(ﬂseAz>x€B)

(Subset

A=B&pr(ACBABCA) (Class identity
ACB&pr(ACBANA#B) (Proper subclass
0=pf{z:z#a} (Empty class

AUB=ps{z:x € AVz e B}
ANB=ps{z:v € ANz € B}
A—B=ps{z:xc ANz ¢ B}

Andras Maté metalogic 03. March

(Union
(Intersection

(Difference

)
)
)
)
)
)
)




Class relations, operations, etc.

A§B<:>Df/\x(ﬂseAz>x€B)

(Subset

A=B&pr(ACBABCA) (Class identity
ACB&pr(ACBANA#B) (Proper subclass
0=pf{z:z#a} (Empty class

AUB=ps{z:x € AVz e B}
ANB=ps{z:v € ANz € B}
A—B=ps{z:xc ANz ¢ B}
A is disjoint from B <=p; ANB =1

Andras Maté metalogic 03. March

(Union
(Intersection

(Difference

)
)
)
)
)
)
)




Language radices

metalogic 03. March



Language radices

A language is characterized:

metalogic 03. March



Language radices

A language is characterized:

O By its alphabet, i.e. a finite collection A of objects called
letters;

Andras Maté metalogic 03. March



Language radices

A language is characterized:

O By its alphabet, i.e. a finite collection A of objects called
letters;

@ By the set A° of its strings or words;

Andras Maté metalogic 03. March



Language radices

A language is characterized:

O By its alphabet, i.e. a finite collection A of objects called
letters;

@ By the set A° of its strings or words;

@ By the operation " of concatenation over the strings;

Andras Maté metalogic 03. March



Language radices

A language is characterized:

O By its alphabet, i.e. a finite collection A of objects called
letters;

@ By the set A° of its strings or words;
@ By the operation " of concatenation over the strings;

@ By the fact that there is a neutral element for the operation
of concatenation: the empty word &;

Andras Maté metalogic 03. March



Language radices

A language is characterized:

O By its alphabet, i.e. a finite collection A of objects called
letters;

@ By the set A° of its strings or words;
@ By the operation " of concatenation over the strings;

@ By the fact that there is a neutral element for the operation
of concatenation: the empty word &;

@ By various classes of strings regarded as categories of
meaningful expressions.

Andras Maté metalogic 03. March



Language radices

A language is characterized:

O By its alphabet, i.e. a finite collection A of objects called
letters;

@ By the set A° of its strings or words;

@ By the operation " of concatenation over the strings;

@ By the fact that there is a neutral element for the operation
of concatenation: the empty word &;

@ By various classes of strings regarded as categories of
meaningful expressions.

The first four items are together the radix of the language. We
want to describe it axiomatically because we don’t want to refer
to set theory for making precise the concepts (finiteness etc.)
used in the above enumeration.

Andras Maté metalogic 03. March



Axioms for language radices

metalogic 03. March



Axioms for language radices

AC A° and & € A° (R1)

Andras Maté metalogic 03. March



Axioms for language radices

AC A° and & € A° (R1)

z,y € A° =2y e A° (R2)

Andras Maté metalogic 03. March



Axioms for language radices

AC A% and @ € A° (R1)
z,y € A° =2y e A° (R2)
z,y,2 € A° = (2"y) "z = 2" (y"2) (R3)

Andras Maté metalogic 03. March



Axioms for language radices

AC A% and @ € A° (R1)
z,y € A° =2y e A° (R2)
z,y,2 € A° = (2"y) "z = 2" (y"2) (R3)

Let us leave the antecedent z(,y, etc.) € A°; Latin letters are
always variables for strings.

Andras Maté metalogic 03. March



Axioms for language radices

AC A% and @ € A° (R1)
z,y € A° =2y e A° (R2)
z,y,2 € A° = (2"y) "z = 2" (y"2) (R3)

Let us leave the antecedent z(,y, etc.) € A°; Latin letters are
always variables for strings.

a:;é@@\/y\/a(ozefl/\m:yﬂa) (R4)

(a,pe ANz a=9y"p)= (r=yAra=p) (Rb)

Andras Maté metalogic 03. March



Axioms for language radices

AC A% and @ € A° (R1)
z,y € A° =2y e A° (R2)
z,y,2 € A° = (2"y) "z = 2" (y"2) (R3)

Let us leave the antecedent z(,y, etc.) € A°; Latin letters are
always variables for strings.

a:;é@@\/y\/a(ozefl/\m:yﬂa) (R4)

(a,pe ANz a=9y"p)= (r=yAra=p) (Rb)

(y=roy=2)A(@"y=y e z=29) (R6)

Andras Maté metalogic 03. March



Axioms for language radices

AC A% and @ € A° (R1)
z,y € A° =2y e A° (R2)
z,y,2 € A° = (2"y) "z = 2" (y"2) (R3)

Let us leave the antecedent z(,y, etc.) € A°; Latin letters are
always variables for strings.

a:;é@@\/y\/a(ozefl/\m:yﬂa) (R4)
(a,pe ANz a=9y"p)= (r=yAra=p) (R5)
(y=rey=2)A(a"y=y sz =2) (R6)
That’s all. (R7)

Andras Maté metalogic 03. March



