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Forgotten parts of the BHK-interpretation

Proof of ∀xA(x): a construction which transforms any proof
showing that d is a member of the domain into a proof of
A(d).

Proof of ¬A: proof of A →⊥.
Brouwer�Heyting�Kolmogorov interpretation: Not a (formal)
de�nition of the logical constants of intuitionistic logic, but just
an informal descripition of their meaning because it is based on
an informal notion of construction.
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Intuitionist logic: basic di�erences from classical logic

Intuitionist propositional logic resp. predicate logic is a
subsystem of classical propositional/�rst-order predicate logic
(without identity). Main di�erence: LEM is not generally valid.

If P (x) is a decidable predicate (say `x is a prime number', then
∀x(P (x) ∨ ¬P (x)) holds.

A(x) ⇐⇒def ∃y∃z(P (y) ∧ P (z) ∧ 2x = y + z)

is decidable again, therefore ∀x(A(x) ∨ ¬A(x)) holds, too. But
∀xA(x) ∨ ¬∀xA(x) does not hold because we don't know
whether Goldbach's conjecture is true or not and therefore we
are not in the position to assert either member of the
disjunction.

Another example: B(x) ⇐⇒def ∃y(y > x ∧ P (y) ∧ P (y + 2)) is
not a decidable predicate. Therefore ∀x(B(x) ∨ ¬B(x)) does not
hold.
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Intuitionist logic: di�erences continued

Double negation deletion law (¬¬A → A) does not hold (but
the converse does).

Propositions S for which ¬¬S → S is demonstrable are called
stable.

Indirect refutation

((A → B) ∧ (A → ¬B)) → ¬A

holds.
But indirect proof

((¬A → B) ∧ (¬A → ¬B)) → A

is not generally valid.
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Consistency, semantics

Glivenko's theorem (1929): A is provable in classical �rst-order
logic (FOL) i� ¬¬A is provable in intuitionist propositional
logic.

With predicate logic, the situation is a bit more di�cult, but
there is a negative translation function g from FOL to
intuitionist predicate logic s.t. for any �rst-order formula A,
FOL proves A ↔ g(A), intuitionist predicate logic proves
g(A) ↔ ¬¬g(A) and if FOL proves A, then intuitionist
predicate logic proves g(A).

Consequence: FOL and intuitionist predicate logic are
equiconsistent.

Intuitionist logic has several di�erent semantics. Perhaps the
most important one, with soundness and completeness
theorems: Kripke-structures. In case of propositional logic:
Kripke-structures are trees and nodes on a branch of a tree
represent (by and far) the consecutive stands of research.
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Natural numbers; Heyting arithmetics HA

The non-logical axioms of intuitionist (Heyting) arithmetics are
the same as the Peano axioms plus axioms for identity that
guarantee that `=' is an equivalence relation symbol. But logic
is the intuitionist predicate logic.

Atomic formulas are decidable and stable, and so are formulas
with bounded quanti�ers.

HA is capable of Gödelisation, therefore incompleteness
theorems are valid for it.
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Real numbers

`Let us consider the concept: �real number between 0 and 1.�
For the formalist this concept is equivalent to �elementary series
of digits after the decimal point,� for the intuitionist it means
�law for the construction of an elementary series of digits after
the decimal point, built up by means of a �nite number of
operations.� And when the formalist creates the �set of all real
numbers between 0 and 1,� these words are without meaning for
the intuitionist, even whether one thinks of the real numbers of
the formalist, determined by elementary series of freely selected
digits, or of the real numbers of the intuitionist, determined by
�nite laws of construction.' (Brouwer)

Intuitionist theory of real numbers is incomparable with classical
real analysis. Some true propositions of classical analysis are not
true intuitionistically, but there are theorems of intuitionist
analysis which are not true classically.
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Weak counterexamples: classically true propositions that

are neither true nor false in intuitionistic analysis.

Be A(n) is a decidable predicate of natural numbers for which
we don't know whether ∀nA(n) is true or not; say, `2n is the
sum of two prime numbers'. Let us de�ne a sequence of real
numbers:

rn =

{
2−n if ∀m ≤ nA(m)
2−m if ¬A(m) ∧m ≤ n ∧ ∀k < mA(k)

This sequence de�nes a real number r. Bu we don't know
whether r = 0 (the Goldbach conjecture is true) or not.

Therefore, the function

f(x) =

{
0 if x ≤ 0
1 if x > 0

is not totally de�ned (it is unde�ned for the above r).
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The intuitionist continuum

Real numbers are generated by (identi�ed with) choice
sequences. A choice sequence is an in�nite sequence of numbers
(or other �nite objects) created by the free will. The sequences
are not �ready� objects but they are continuously generated in
time and never �nished.

A choice sequence may be generated by some law (lawlike
sequences) but it can be a lawless products of the free will, too.

Most of the classical concepts have an intuitionistic counterpart
based on choice sequences. E. g. the intuitionistic counterpart of
the (su�ciently small) neighborhood of a real number is the set
of choice sequences having a (su�ciently long) common initial
segment with the given choice sequence.

In classical mathematics, we postulate that every non-empty set
of real numbers with an upper bound has a least upper bound
(Dedekind-completeness). In intuitionistic mathematics,
continuity axioms have a similar role.
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Intuitionist choice and a strong counterexample

The axiom of choice (AC) is unacceptable for the intuitionist.
But there are weaker versions of AC which are acceptable (and
important for classical mathematics, too): countable choice,
dependent choice.

There are statements that are (de�nitely) true in intuitionistic
mathematics although classically false. A simple but very
important example:

Every total real function is continuous.
�Funny� functions are eliminated from intuitionistic analysis.
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