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Gödel's discovery

Gödel 1931: `On Formally Undecidable Propositions of Principia
Mathematica and Related Systems'

First Incompleteness Theorem: Peano arithmetics is not
negation complete.
There is some sentence G such that neither G itself nor ¬G can
be deduced from the axioms
(provided that Peano-arithmetics is ω-consistent).

The claim of the theorem remains valid if we enlarge the system
with new axioms or axiom schemes.
It is valid for systems where Peano arithmetics has a model (e.g.
set theory).

Rosser 1936: Instead of ω-consistency, consistency is enough.

Second Incompleteness Theorem: The sentence expressing
the consistency of Peano arithmetics is neither provable nor
refutable (under the same conditions and with the same
generalizations).
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Kalmár's proof of the �rst incompleteness theorem

Language: �rst-order logic with the individual constant 0 and
some function sign for arithmetic operations. Let it include at
least the successor (′) and the four basic operations
(+, ∗, −, ÷).

Numerals are the individual terms 0, 0′, 0′′, . . ..
Numerical terms are the terms containing no variable.
We suppose that we can calculate the value of any numerical
term.
To calculate a numerical term t is to prove some equality t = n
(where n is a numeral).
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A matrix of inequalities and its diagonal

Let us consider the terms of the language containing (at most)
one free variable. We can enumerate them in an (in�nite)
sequence:

k0(x), k1(x), . . . , kn(x), . . .

The indexes are the Gödel numbers of the terms.

Let us arrange the inequalities of the form kn(x) ̸= m in a
two-dimensional in�nite table on the obvious way:

k0(x) ̸= 0 k0(x) ̸= 1 . . . k0(x) ̸= n . . .
k1(x) ̸= 0 k1(x) ̸= 1 . . . k1(x) ̸= n . . .

...
kn(x) ̸= 0 kn(x) ̸= 1 . . . kn(x) ̸= n . . .
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Diagonalisation

If we have some e�ective system of axioms and derivation rules
(i.e. we have an e�ectively axiomatized theory), some of these
inequalities become provable, others become refutable. Are there
`neither-nor' cases?

Let us consider the diagonal of the table, i. e. the sequence of
formulas kn(x) ̸= n (let us call them diagonal formulas). We can
enumerate all the proofs in our theory, and therefore we can
enumerate the proofs proving diagonal formulas:

P0, P1, . . . , Pn, . . .

Let the function f be de�ned on the following way: f(n) = m i�
Pn proves the mth diagonal formula.

Lemma (not proved) : f(x) can be expressed in our language by
a term with one variable.
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The Gödel sentence

A consequence of the above lemma: f(x) occurs (at least once)
in the sequence < kn(x) >. Let g be its �rst index. I.e., for all x,
f(x) = kg(x)

Let us consider the gth diagonal formula:

kg(x) ̸= g (G)

If (G) is provable, then for some m, the proof Pm proves G,
therefore by the de�nition of f , f(m) = kg(m) = g, and so (G)
is false.
If (G) is false, then for some n, kg(n) = f(n) = g, and therefore
Pn proves (G).
To sum up, (G) is provable i� it is false.
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The �nal result and some discussion

If our arithmetics (that can be Peano arithmetics or any e�ective
extension of it) calculates every numerical term and proves only

true equalities with at most one variable, then the Gödel
sentence (G) is true and not provable, and its negation is not
provable because it is false. Therefore it is negation incomplete.

A plausible reading of the (G) sentence: For every x, kg(x) (i.e.,
f(x)) is di�erent from g. It means that the diagonal formula
numbered with g has no proof. But the g-th diagonal formula is
(G) itself!! Therefore (G) says: `I am not provable'.

We have proved the �rst incompleteness theorem for theories
that satisfy the italicized condition above.

Gödel used a weaker condition than the above one: he assumed
that that the theory be ω-consistent.

A consistent theory is ω-inconsistent i� there is some property
P s.t. the theory proves P (0), P (1), . . . P (n), . . . for each
numeral n, but it proves ∃x¬P (x), too.
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The (un)provability of consistency

The consistency of PA can be expressed within PA:

CPA ↔ There is no natural number s.t. it is the Gödel number
of the proof of 0 = 0′

CPA is a deductively undecidable sentence of PA. (Second
incompleteness theorem.) It is true on the standard model but
false on some non-standard models.

PA + ¬ CPA is an example for consistent, but ω-inconsistent
theory (if Peano arithmetics is consistent).
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Impact of the second incompleteness theorem

Gödel: `I wish to note expressly that [this theorem] does
not contradict Hilbert's formalistic viewpoint. For this
viewpoint presupposes only the existence of a consistency
proof in which nothing but �nitary means of proof is used
and it is conceivable that there exist �nitary proofs that
cannot be expressed in the formalism of [�rst-order Peano
arithmetics].' (Original paper on the incompleteness
theorems)

von Neumann: `Thus I am today of the opinion that
1 Gödel has shown the unrealizability of Hilbert's program.
2 There is no more reason to reject intuitionism (if one

disregards the aesthetic issue, which in practice also for me
be the decisive factor).'

(Letter to Carnap, 1931)
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arithmetics].' (Original paper on the incompleteness
theorems)

von Neumann: `Thus I am today of the opinion that
1 Gödel has shown the unrealizability of Hilbert's program.
2 There is no more reason to reject intuitionism (if one

disregards the aesthetic issue, which in practice also for me
be the decisive factor).'

(Letter to Carnap, 1931)
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Consistency of PA � proved by Gentzen, reformulated by
Kalmár

We want to prove that any numerical formula that is derivable
in the system is true.

Therefore, the formula `0 = 0′' can't be derived.

Some notions:

Numerical terms and formulas: no variables.

Veri�able formulas:

no bound variables

yield true numerical formulas for any substitution of their
free variables (with numerals)

Our axioms except of induction axioms are veri�able formulas
and that is all we need about them.
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Preparatory steps 1.

Let us have an arbitrary deduction of some numerical formula
(the closing formula).

Eliminate the universal quanti�cations.

Arrange the deduction in a tree on the obvious way.

Each formula occurs in as many copies as many times it is
applied in the deduction. I.e., nodes are formula tokens.
The root is the closing formula of the deduction.
Each leaf is of one of the following sorts:

1 Truths of propositional logic (tautologies)
2 ∃-axioms: A(t) → ∃rA(r)
3 Equality formulas: r = s → (A(r) → A(s))
4 Veri�able formulas
5 Induction axioms
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Preparatory steps 2.

Substitute every induction axiom
A(0) → ∀c(A(c) → A(c′)) → A(a) with an application of
the following inference scheme (I):

A(0) A(c) → A(c′)

A(a)

We use the following 3 inference rules:

Detachment

I-scheme, as above

∃-scheme:
B(c) → A

∃xB(x) → A
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Transformation of the proof tree

A long and sometimes tricky calculation shows that we can
transform our proof tree to a proof tree that deduces the closing
formula from substitutions of the veri�able formulas and
tautologies (at the leafs) and it uses detachment as inference
rule only.

The closing formula is deduced by this transformed tree from
veri�ed numerical equalities (substitutions of the axioms) using
propositional logic only. So there is no reason to doubt in it.
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Elimination steps

The two key step-types of the transformation are the following:

Elimination of I-inferences. We use an I-inference to prove a
truth about some concrete number, e.g. 3 only. So we can
substitute it by inferences from 0 to 1, from 1 to 2, from 2
to 3.

Elimination of forks. A fork is the following con�guration in
the proof tree: An existentially quanti�ed formula is
introduced somewhere by using an ∃-scheme, and the same
formula is the consequent of some ∃-axiom at some leaf.
The idea is that relevant existentially quanti�ed formulas
occur in such pairs. The paths from these two formulas to
the closing formula must met at some node before the
closing formula because otherwise the closing formula
would contain quanti�cation. Forks can be substituted by
propositional proof trees, too.
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What is remaining?

We should prove yet that from any proof of a numerical formula
we can reach by a �nite number of iterated use of the
I-inference elimination and fork elimination such a transformed
proof tree. This is the part of our proof which can't be
formalized within 1-order Peano Arithmetic.
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0− ω-�gures

Recursive de�nition of the 0− ω-�gures together with their
ordering < and their classi�cation into degrees:1

The �rst and smallest �gure is `0', the single member of the
degree 0.

The members of the �rst degree are (nonempty)
sum(expression)s of the form ω0 +ω0 + ...+ω0. The shorter
one is the smaller one, and 0 is smaller than any of them.
Let us write 1 instead of ω0 and r instead of the sum of the
length r.

1Ordinals under the �rst ε-number, in an intuitive form.
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0− ω-�gures, continued

Let us have introduced the �gures up to the degree k
together with their ordering. An expression of the form

ωa1 + ωa2 + ...+ ωar (r ̸= 0)

belongs to the degree k + 1 i�

the expressions a1, ...ar all belong to a degree ≤ k;
a1 belongs to the degree k;
a1 ≥ a2 ≥ ... ≥ ar in the sense of the ordering introduced up
to the degree k.

Extension of < (the ordering) for the degree k + 1:

Figures of the degree k + 1 are all larger than the �gures of
the previous degrees.

A �gure a of the degree k + 1 is larger than another one (b)
i�

the �rst exponent in which they di�er is larger in a then in
b;
or else i� it is a continuation of b.
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Assignation of ordinals to the nodes of the proof tree

We can label the nodes of our original proof tree (after the
preparation steps) with 0− ω-�gures, shortly: ordinals.
We begin with the leaves and follow step by step the proof. The
ordinal of each node depends on the ordinals of its immediate
ancestor(s) in a rather simple way. On the very end, we arrive at
the ordinal of the closing formula - this is the ordinal of the
proof.
We prove that through the elimination steps the ordinal
(strictly) decreases.
The closing step (next slides): we prove that there is no in�nite
decreasing sequence of our ordinals.
Therefore, we can reach the transformed tree in �nitely many
steps.
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Descending �nite ordinals

An ordinal is descending �nite if there is no in�nite decreasing
sequence of ordinals beginning with it. We prove (by induction!)
that every ordinal is descending �nite.

The ordinals of degree 0 and 1 are obviously descending
�nite. (The latter is an induction-dependent claim now.)

Let us suppose that every ordinal with a degree not larger
than k ≥ 1 is descending �nite. We should prove that every
ordinal of the degree k + 1 is descending �nite.

It is enough to prove that every ordinal of the form ωa

(where a has the degree k) is descending �nite.

Let us have a decreasing sequence from ωa. Its �rst member
is c = ωa1 + ωa2 + ...+ ωar , where a1 < a. We should prove
that c is descending �nite.
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Descending �nite ordinals, continued

c is not larger than ωa1 + ωa1 + ...+ ωa1 (shortly, ωa1 · r).
Therefore, if we have a descending chain from c, we can get
a descending chain from ωa1 · r putting this latter ordinal to
the beginning of the sequence. Therefore, if ωa1 · r is
descending �nite, then ωa is descending �nite, too.

If the ordinal ωb is descending �nite, then ωb · r is
descending �nite, too. (Another subproof, by induction.)

Therefore we reduced the descending �niteness of ωa to
that of ωa1 , where a1 < a. Iterating this consideration, we
can get a decreasing sequence a > a1 > a2... where the �rst
member has the degree k and therefore by hypothesis the
sequence is �nite.

The last member must be of degree 0 or 1 because otherwise
the decreasing sequence could have been continued. But the
ordinals of degree 0 and 1 are descending �nite.

Q. e. d.
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Conclusion

The proof of the proposition that there are no in�nite
decreasing sequences of ordinals is the part of the proof which
cannot be formalized within PA.

Is it �nitary? In other words, what did we gain by this proof?

We have bought the reliability of Peano arithmetics on the price
that we accept the above induction (in the last part of the
proof).

The induction above is an informal argumentation about �nite
syntactical objects ordered into a trans�nite sequence.

1-order Peano proofs (formalized as above) use two sorts of
`trans�nite' tools: ∃-inferences and induction inferences. Our
metalanguage proof showed that both can be eliminated on the
price that the �niteness of the elimination procedure can be
proved by some stronger sort of induction only.

BTW. we did not use the other trans�nite tool (∃-inference or
equivalently, existential instantiation) in the proof.
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