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Basic metalogical notions

Let us have a sequence of closed formulas Γ (a theory) in some

formal language equipped with a calculus (system of rules of

derivation).

Thm(Γ) is the set of closed formulas derivable from Γ.

Γ is consistent i� Thm(Γ) is a proper subset of the sentences of

the language

.

Γ is negation complete i� for every closed sentence A of the

language, either A or ¬A is in Thm(Γ).
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Basic notions II: Semantical notions

Interpretation of a set of formulas consists of a domain of

individuals plus a mapping of the constants of the formulas to

their extensions in the model. Not an exact de�nition! An

interpretation renders a truth value to every closed formula.

Model of a set of formulas is an interpretation that makes every

member of the set true.

An inference Γ =⇒ C is (semantically) valid i� every model of Γ
is a model of C.

Semantic completeness is the property of the logical calculus

that every semantically valid inference can be proved by

derivation in the calculus.
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Metalogical properties of �rst-order logic

A technique to prove metatheorems: analytic sequences

Let us have a �rst-order language L(1) and a theory Γ
formalized in it.

A sequence of closed sentences Γ∗ (in some L′(1) that is an

extension of L(1) by some in-constants) is a

�nished analytic sequence for Γ i�

it contains every member of Γ;

if it contains a sentence ¬¬A, then it contains A, too;

if it contains A → B, then it contains either ¬A or B;

if it contains ¬(A → B), then it contains both A and ¬B;

if it contains ¬∀xA, then it contains at least one sentence of

the form ¬A(a/x);
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Analytic sequences (continuation)

if it contains ∀xA, then it contains

at least one formula of the form A(a/x);

every formula of the form A(a/x) where a is any in-constant

occurring in Γ∗;

if it contains an atomic sentence A and a formula a = b,
then it contains both A(a/b) and A(b/a);

it contains no trivial contradiction, i.e.

no sentence of the form a ̸= a;
no pair of sentences A, ¬A.
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A useful metatheorem

Proposition There is an algorithm that produces a sequence

Γ∗ of closed sentences from Γ s.t.:

Every step of the algorithm produces a consistent extension of Γ
and either

I Γ∗ is a �nished analytic sequence for Γ
or

II Γ∗ is �nite and contains a trivial contradiction.

In case I, Γ∗ has a model (therefore Γ has a model, too) whose

domain consists of natural numbers only.

In case II, Γ is inconsistent.
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Theorems

Compactness: If Γ is inconsistent, then it has an inconsistent

�nite subset. In other words:

If every �nite subset of Γ is consistent, then Γ is consistent,

too.

If a sentence follows (semantically) from Γ (i.e., Γ ∪ {¬C}
has no model), then it follows from a �nite part of Γ.

Completeness: Every consistent set of sentences Γ has a

model. Alternative formulation:

If a sentence C is a (semantical) consequence of a set of

sentences Γ, then C is derivable from Γ.

Löwenheim-Skolem: If a set of sentences has a model, then it

has a countable model, too.
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Some consequences

1. There is no sentence in �rst-order logic expressing the in�nity

of the domain.

2. Let us suppose that we have a �rst-order theory of real

numbers that contains the usual operations and relations for

real numbers and proves at least some simple propositions about

them. Let us suppose further than we have a model of it that

consists of the real numbers as we used to think of them

(`standard model').

We can prove within the theory that the domain (the set of real

numbers) is not countable (Cantor's theorem).

But by Löwenheim-Skolem, it has a model where the domain is

countable. (Skolem's paradox.)

Not a contradiction; but it implies that some important notions

(e.g. countability) are incurably relative, model-dependent.

(Putnam: `Models and reality', 1980)
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We can prove within the theory that the domain (the set of real

numbers) is not countable (Cantor's theorem).

But by Löwenheim-Skolem, it has a model where the domain is

countable. (Skolem's paradox.)

Not a contradiction; but it implies that some important notions

(e.g. countability) are incurably relative, model-dependent.

(Putnam: `Models and reality', 1980)
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Consequences continued

3. The �rst-order theory of real numbers has non-standard

models, e.g. models where there are in�nitely small positive

numbers.

Let us consider the following set of propositions:

{0 < a < 1, 0 < a < 1/2, . . . , 0 < a < 1/n, . . .}
∪{Axioms of the theory}

Every �nite subset of this set has a model (namely the standard

one extended by a suitable interpretation of `a'). Therefore, (by
compactness) the whole set has a model, too, and it is a model

of the axioms.
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Consequences �nished (for now)

4. Similarly, Peano arithmetics has models with in�nitely large

numbers.

BTW., nonstandard models of Peano arithmetics can be

characterized by the following 2-order sentence:

∃X(∃xXx ∧ ∀x(Xx → x > 0)∧
∀y[∀x(Xx → x > y) → ∀x(Xx → x > y′)])

András Máté Digression: 1-order logic



Consequences �nished (for now)

4. Similarly, Peano arithmetics has models with in�nitely large

numbers.

BTW., nonstandard models of Peano arithmetics can be

characterized by the following 2-order sentence:

∃X(∃xXx ∧ ∀x(Xx → x > 0)∧
∀y[∀x(Xx → x > y) → ∀x(Xx → x > y′)])

András Máté Digression: 1-order logic



Consequences �nished (for now)

4. Similarly, Peano arithmetics has models with in�nitely large

numbers.

BTW., nonstandard models of Peano arithmetics can be

characterized by the following 2-order sentence:

∃X(∃xXx ∧ ∀x(Xx → x > 0)∧
∀y[∀x(Xx → x > y) → ∀x(Xx → x > y′)])

András Máté Digression: 1-order logic


