Dedekind's numbers

András Máté

07.10.2022

Back to Frege arithmetics

Back to Frege arithmetics

Frege arithmetics (today): second-order logic + Hume's principle.

Back to Frege arithmetics

Frege arithmetics (today): second-order logic + Hume's principle.

Using Frege's definitions, we arrive to a theory equivalent to second-order Peano arithmetics.

Back to Frege arithmetics

Frege arithmetics (today): second-order logic + Hume's principle.

Using Frege's definitions, we arrive to a theory equivalent to second-order Peano arithmetics.

It is consistent: how do we know it?

Back to Frege arithmetics

Frege arithmetics (today): second-order logic + Hume's principle.

Using Frege's definitions, we arrive to a theory equivalent to second-order Peano arithmetics.

It is consistent: how do we know it?
It is consistent relative to Peano arithmetics (proven by Boolos in the 1980's).

Back to Frege arithmetics

Frege arithmetics (today): second-order logic + Hume's principle.

Using Frege's definitions, we arrive to a theory equivalent to second-order Peano arithmetics.

It is consistent: how do we know it?
It is consistent relative to Peano arithmetics (proven by Boolos in the 1980's).

A definition of abstract objects introduced by an abstraction principle is consistent relative to set theory if the equivalence classes generated by the principle are sets.

Richard Dedekind

Richard Dedekind (1831-1916)

Richard Dedekind

Richard Dedekind (1831-1916)

The grandfather of mathematical structuralism

Richard Dedekind

Richard Dedekind (1831-1916)

The grandfather of mathematical structuralism
Structuralism:

Richard Dedekind

Richard Dedekind (1831-1916)

The grandfather of mathematical structuralism
Structuralism:
(1) Bourbaki circle from the 1930's

Richard Dedekind

Richard Dedekind (1831-1916)

The grandfather of mathematical structuralism
Structuralism:
(1) Bourbaki circle from the 1930's
(2) Paul Benacerraf: „What numbers could not be" (1965)

Richard Dedekind

Richard Dedekind (1831-1916)

The grandfather of mathematical structuralism
Structuralism:
(1) Bourbaki circle from the 1930's
(2) Paul Benacerraf: „What numbers could not be" (1965)
(3) William Lawvere's works on category theory (from the 1960's)

Dedekind cut

Dedekind cut

1872: Continuity and irrational numbers

Dedekind cut

1872: Continuity and irrational numbers
Dedekind cut: Divide the rational numbers into two classes so that every member of the first (lower) class is less than any member of the second (upper) class. Such a classification is called cut.

There are three sorts of cuts:
(1) The upper class has a minimal member.
(2) The lower class has a maximal member.
(3) Neither of 1 . or 2 .

Dedekind cut

1872: Continuity and irrational numbers
Dedekind cut: Divide the rational numbers into two classes so that every member of the first (lower) class is less than any member of the second (upper) class. Such a classification is called cut.

There are three sorts of cuts:
(1) The upper class has a minimal member.
(2) The lower class has a maximal member.
(3) Neither of 1 . or 2 .

Irrational numbers: cuts of the sort 3 .

Dedekind cut

1872: Continuity and irrational numbers
Dedekind cut: Divide the rational numbers into two classes so that every member of the first (lower) class is less than any member of the second (upper) class. Such a classification is called cut.

There are three sorts of cuts:
(1) The upper class has a minimal member.
(2) The lower class has a maximal member.
(3) Neither of 1 . or 2 .

Irrational numbers: cuts of the sort 3 .
Rational numbers can be identified with cuts of sort 1. (or 2., as you like it.)

1872: Continuity and irrational numbers
Dedekind cut: Divide the rational numbers into two classes so that every member of the first (lower) class is less than any member of the second (upper) class. Such a classification is called cut.

There are three sorts of cuts:
(1) The upper class has a minimal member.
(2) The lower class has a maximal member.
(3) Neither of 1 . or 2 .

Irrational numbers: cuts of the sort 3 .
Rational numbers can be identified with cuts of sort 1. (or 2., as you like it.)

But what are the natural numbers?

The Nature and Meaning of Numbers

The Nature and Meaning of Numbers

1887: What numbers are and what they ought to be?

The Nature and Meaning of Numbers

1887: What numbers are and what they ought to be?
„In science nothing capable of proof ought to be accepted without proof."

The Nature and Meaning of Numbers

1887: What numbers are and what they ought to be?
„In science nothing capable of proof ought to be accepted without proof."

Chapter I.: System [$=$ set], subset, union, intersection.

The Nature and Meaning of Numbers

1887: What numbers are and what they ought to be?
„In science nothing capable of proof ought to be accepted without proof."

Chapter I.: System [$=$ set], subset, union, intersection.
II.: Transformation [= function] of a system [$=$ on a set], composition.

The Nature and Meaning of Numbers

1887: What numbers are and what they ought to be?
„In science nothing capable of proof ought to be accepted without proof."

Chapter I.: System [$=$ set], subset, union, intersection.
II.: Transformation [= function] of a system [$=$ on a set], composition.
III.: Similar transformation (= injective function)

The Nature and Meaning of Numbers

1887: What numbers are and what they ought to be?
„In science nothing capable of proof ought to be accepted without proof."

Chapter I.: System [$=$ set], subset, union, intersection.
II.: Transformation [= function] of a system [$=$ on a set], composition.
III.: Similar transformation (= injective function)
[A function φ is injective iff $\varphi(x)=\varphi(y) \rightarrow x=y$]

The Nature and Meaning of Numbers

1887: What numbers are and what they ought to be?
„In science nothing capable of proof ought to be accepted without proof."

Chapter I.: System [= set], subset, union, intersection.
II.: Transformation [= function] of a system [$=$ on a set], composition.
III.: Similar transformation (= injective function)
[A function φ is injective iff $\varphi(x)=\varphi(y) \rightarrow x=y$]
$S^{\prime}=\varphi(S)$ is the system consisting of the φ-pictures of the members of S. If φ is a similarity transformation, then it has a converse that is a similarity transformation again and φ is an one-to-one correspondence between the members of S and S^{\prime}.

Similar systems, chains

Similar systems, chains

Two systems are similar iff there is a similarity transformation between them.

Similar systems, chains

Two systems are similar iff there is a similarity transformation between them.

We can divide all systems into (equivalence) classes by similarity. For any system R, we can define the class of the systems similar to it. R is the representative of the class. Any member of the class can be chosen as representative.

Similar systems, chains

Two systems are similar iff there is a similarity transformation between them.

We can divide all systems into (equivalence) classes by similarity. For any system R, we can define the class of the systems similar to it. R is the representative of the class. Any member of the class can be chosen as representative.
Let S be any system, φ a transformation for which $\varphi(S) \subseteq S$.

Similar systems, chains

Two systems are similar iff there is a similarity transformation between them.

We can divide all systems into (equivalence) classes by similarity. For any system R, we can define the class of the systems similar to it. R is the representative of the class. Any member of the class can be chosen as representative.
Let S be any system, φ a transformation for which $\varphi(S) \subseteq S$. $K \subseteq S$ is a(φ-)chain iff $\varphi(K) \subseteq K$

Similar systems, chains

Two systems are similar iff there is a similarity transformation between them.

We can divide all systems into (equivalence) classes by similarity. For any system R, we can define the class of the systems similar to it. R is the representative of the class. Any member of the class can be chosen as representative.
Let S be any system, φ a transformation for which $\varphi(S) \subseteq S$. $K \subseteq S$ is a $(\varphi-)$ chain iff $\varphi(K) \subseteq K$
S itself is a chain, $\varphi(K)$ is a chain if K is a chain, union and intersection of chains is a chain.

Similar systems, chains

Two systems are similar iff there is a similarity transformation between them.

We can divide all systems into (equivalence) classes by similarity. For any system R, we can define the class of the systems similar to it. R is the representative of the class. Any member of the class can be chosen as representative.
Let S be any system, φ a transformation for which $\varphi(S) \subseteq S$. $K \subseteq S$ is a $(\varphi-) \underline{\text { chain }}$ iff $\varphi(K) \subseteq K$
S itself is a chain, $\varphi(K)$ is a chain if K is a chain, union and intersection of chains is a chain.
If $A \subseteq S$, then the intersection of all chains containing A is a chain containing A and contained by S. It is the chain of A, A_{0}, or $\varphi_{0}(A)$.

Similar systems, chains

Two systems are similar iff there is a similarity transformation between them.

We can divide all systems into (equivalence) classes by similarity. For any system R, we can define the class of the systems similar to it. R is the representative of the class. Any member of the class can be chosen as representative.
Let S be any system, φ a transformation for which $\varphi(S) \subseteq S$. $K \subseteq S$ is a $(\varphi-) \underline{\text { chain }}$ iff $\varphi(K) \subseteq K$
S itself is a chain, $\varphi(K)$ is a chain if K is a chain, union and intersection of chains is a chain.
If $A \subseteq S$, then the intersection of all chains containing A is a chain containing A and contained by S. It is the chain of A, A_{0}, or $\varphi_{0}(A)$.
Theorem of complete induction: For any systems Σ and $A \subseteq \Sigma$, if for any $x \in A_{0} \cap \Sigma, \varphi(x) \in A_{0} \cap \Sigma$, then $A_{0} \subseteq \Sigma$.

Infinity

Infinity

A system is (Dedekind-)infinite iff it is similar to a proper part of itself. Finite in the other case.

Infinity

A system is (Dedekind-)infinite iff it is similar to a proper part of itself. Finite in the other case.
66. Theorem. There exist infinite systems.

Proof.* My own realm of thoughts, i. e., the totality S of all things,. which can be objects of my thought, is infinite. For if s signifies an element of S, then is the thought s^{\prime}, that s can be object of my thought, itself an element of S. If we regard this as transform $\phi(s)$ of the element s then has the transformation ϕ of S, thus determined, the property that the transform S^{\prime} is part of S; and S^{\prime} is certainly proper part of S, because there are elements in S (e. g., my own ego) which are different from such thought s^{\prime} and therefore are not contained in S^{\prime}. Finally it is clear that if a, b are different elements of S, their transforms a^{\prime}, b^{\prime} are also different, that therefore the transformation ϕ is a distinct (similar) transformation (26). Hence S is infinite, which was to be proved.

Numbers

Numbers

Chapter VI.: Simply infinite systems

Chapter VI.: Simply infinite systems
N is simply infinite iff there is a similarity φ and an element of N called 1 s.t.
$N=\varphi_{0}(1)$ and $1 \notin \varphi(N)$

Chapter VI.: Simply infinite systems
N is simply infinite iff there is a similarity φ and an element of N called 1 s.t.
$N=\varphi_{0}(1)$ and $1 \notin \varphi(N)$
Theorem: Every infinite system contains a simply infinite system as a part of it.

Chapter VI.: Simply infinite systems
N is simply infinite iff there is a similarity φ and an element of
N called 1 s.t.
$N=\varphi_{0}(1)$ and $1 \notin \varphi(N)$
Theorem: Every infinite system contains a simply infinite system as a part of it.

Natural numbers: the elements of any simply infinite system N if we entirely neglect the special character of the elements; simply retaining their distinguishability and. taking into account only the relations to one another in which they are placed by the order-setting transformation ϕ \square

Numbers: some theorems

Numbers: some theorems

Every natural number m generates a chain m_{0} and $m \in m_{0}$.

Numbers: some theorems

Every natural number m generates a chain m_{0} and $m \in m_{0}$.
Every natural number different from 1 is an immediate follower (φ-picture) of some natural number.

Every natural number m generates a chain m_{0} and $m \in m_{0}$.
Every natural number different from 1 is an immediate follower (φ-picture) of some natural number.

Complete induction: If
(1) $A(m)$ holds;
(2) for any $n \in m_{0}$, if $A(n)$, then $A(\varphi(n))$,
then $A(x)$ holds for any member of m_{0}.

Every natural number m generates a chain m_{0} and $m \in m_{0}$.
Every natural number different from 1 is an immediate follower (φ-picture) of some natural number.

Complete induction: If
(1) $A(m)$ holds;
(2) for any $n \in m_{0}$, if $A(n)$, then $A(\varphi(n))$,
then $A(x)$ holds for any member of m_{0}.
To sum up, the axioms of second-order PA hold for simply infinite systems.

Every natural number m generates a chain m_{0} and $m \in m_{0}$.
Every natural number different from 1 is an immediate follower (φ-picture) of some natural number.

Complete induction: If
(1) $A(m)$ holds;
(2) for any $n \in m_{0}$, if $A(n)$, then $A(\varphi(n))$,
then $A(x)$ holds for any member of m_{0}.
To sum up, the axioms of second-order PA hold for simply infinite systems.

In other words, simply infinite systems are models of second order Peano arithmetics. The converse is also true: every model of second-order PA is a simply infinite system.

A negation-complete arithmetics ?!?

A negation-complete arithmetics ?!?

X. The class of simply infinite systems

A negation-complete arithmetics ?!?

X. The class of simply infinite systems

Theorem 132. All the simply infinite systems are similar.

A negation-complete arithmetics ?!?

X. The class of simply infinite systems

Theorem 132. All the simply infinite systems are similar.
In other words: the theory of simply infinite systems is categorical, i.e. every model of the theory is isomorphic to the others.

A negation-complete arithmetics ?!?

X. The class of simply infinite systems

Theorem 132. All the simply infinite systems are similar.
In other words: the theory of simply infinite systems is categorical, i.e. every model of the theory is isomorphic to the others.

Consequence: on each model, the same propositions of the language of second-order PA are true.

A negation-complete arithmetics ?!?

X. The class of simply infinite systems

Theorem 132. All the simply infinite systems are similar.
In other words: the theory of simply infinite systems is categorical, i.e. every model of the theory is isomorphic to the others.

Consequence: on each model, the same propositions of the language of second-order PA are true.

Every proposition of this language is either true in every simply infinite system and therefore a semantical consequence of the second-order Peano-axioms, or the same holds for its negation.

A negation-complete arithmetics ?!?

X. The class of simply infinite systems

Theorem 132. All the simply infinite systems are similar.
In other words: the theory of simply infinite systems is categorical, i.e. every model of the theory is isomorphic to the others.

Consequence: on each model, the same propositions of the language of second-order PA are true.

Every proposition of this language is either true in every simply infinite system and therefore a semantical consequence of the second-order Peano-axioms, or the same holds for its negation.

Therefore, second-order Peano arithmetics (the set of semantical consequences of second-order Peano axioms) is negation complete.

Metalogical consequences

Metalogical consequences

Gödel's first incompleteness theorem: There is no negation-complete axiomatic extension of first-order Peano Arithmetics.

Metalogical consequences

Gödel's first incompleteness theorem: There is no negation-complete axiomatic extension of first-order Peano Arithmetics.

Semantical completeness of a logical calculus: every semantical consequence of any set of premises can be derived in the calculus. First-order logic does have a semantically complete calculus (GÖDEL 1930).

Metalogical consequences

Gödel's first incompleteness theorem: There is no negation-complete axiomatic extension of first-order Peano Arithmetics.

Semantical completeness of a logical calculus: every semantical consequence of any set of premises can be derived in the calculus. First-order logic does have a semantically complete calculus (GÖDEL 1930).

Second-order logic cannot have a semantically complete calculus. Because if it had, then we could derive every semantical consequence from the second-order Peano axioms an we got a negation complete axiomatic extension of first-order Peano arithmetics.

Some additional remarks

A simpler proof of the impossibility of a semantically complete second-order logical calculus: the semantical consequence relation of second-order logic is not compact. There are valid inferences with infinitely many premises where the conclusion does not follow from any finite subset of the premises.

A simpler proof of the impossibility of a semantically complete second-order logical calculus: the semantical consequence relation of second-order logic is not compact. There are valid inferences with infinitely many premises where the conclusion does not follow from any finite subset of the premises.

What is arithmetical truth? A simple-looking answer: a theorem of second-order PA. But the appearance of simplicity is misleading here.

