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Back to Frege arithmetics

Frege arithmetics (today): second-order logic + Hume's
principle.

Using Frege's de�nitions, we arrive to a theory equivalent to
second-order Peano arithmetics.

It is consistent: how do we know it?

It is consistent relative to Peano arithmetics (proven by Boolos
in the 1980's).

A de�nition of abstract objects introduced by an abstraction
principle is consistent relative to set theory if the equivalence
classes generated by the principle are sets.
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Richard Dedekind

Richard Dedekind (1831-1916)

The grandfather of mathematical structuralism

Structuralism:
1 Bourbaki circle from the 1930's
2 Paul Benacerraf: �What numbers could not be� (1965)
3 William Lawvere's works on category theory (from the

1960's)
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Dedekind cut

1872: Continuity and irrational numbers

Dedekind cut: Divide the rational numbers into two classes so
that every member of the �rst (lower) class is less than any
member of the second (upper) class. Such a classi�cation is
called cut.

There are three sorts of cuts:
1 The upper class has a minimal member.
2 The lower class has a maximal member.
3 Neither of 1. or 2.

Irrational numbers: cuts of the sort 3.

Rational numbers can be identi�ed with cuts of sort 1. (or 2., as
you like it.)

But what are the natural numbers?
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The Nature and Meaning of Numbers

1887: What numbers are and what they ought to be?

�In science nothing capable of proof ought to be accepted
without proof.�

Chapter I.: System [= set], subset, union, intersection.

II.: Transformation [= function] of a system [= on a set],
composition.

III.: Similar transformation (= injective function)

[A function φ is injective i� φ(x) = φ(y) → x = y ]

S′ = φ(S) is the system consisting of the φ-pictures of the
members of S. If φ is a similarity transformation, then it has a
converse that is a similarity transformation again and φ is an
one-to-one correspondence between the members of S and S′.
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Similar systems, chains

Two systems are similar i� there is a similarity transformation
between them.

We can divide all systems into (equivalence) classes by
similarity. For any system R, we can de�ne the class of the
systems similar to it. R is the representative of the class. Any
member of the class can be chosen as representative.

Let S be any system, φ a transformation for which φ(S) ⊆ S.

K ⊆ S is a( φ-)chain i� φ(K) ⊆ K

S itself is a chain, φ(K) is a chain if K is a chain, union and
intersection of chains is a chain.

If A ⊆ S, then the intersection of all chains containing A is a
chain containing A and contained by S. It is the chain of A, A0,
or φ0(A).

Theorem of complete induction: For any systems Σ and A ⊆ Σ,
if for any x ∈ A0 ∩ Σ, φ(x) ∈ A0 ∩ Σ,
then A0 ⊆ Σ.
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In�nity

A system is (Dedekind-)in�nite i� it is similar to a proper part
of itself. Finite in the other case.
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Numbers

Chapter VI.: Simply in�nite systems

N is simply in�nite i� there is a similarity φ and an element of
N called 1 s.t.
N = φ0(1) and 1 ̸∈ φ(N)

Theorem: Every in�nite system contains a simply in�nite
system as a part of it.

Natural numbers: the elements of any simply in�nite system N if
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Numbers: some theorems

Every natural number m generates a chain m0 and m ∈ m0.

Every natural number di�erent from 1 is an immediate follower
(φ-picture) of some natural number.

Complete induction: If
1 A(m) holds;
2 for any n ∈ m0, if A(n), then A(φ(n)),

then A(x) holds for any member of m0.

To sum up, the axioms of second-order PA hold for simply
in�nite systems.

In other words, simply in�nite systems are models of second
order Peano arithmetics. The converse is also true: every model
of second-order PA is a simply in�nite system.
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of second-order PA is a simply in�nite system.
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A negation-complete arithmetics ?!?

X. The class of simply in�nite systems

Theorem 132. All the simply in�nite systems are similar.

In other words: the theory of simply in�nite systems is
categorical, i.e. every model of the theory is isomorphic to the
others.

Consequence: on each model, the same propositions of the
language of second-order PA are true.

Every proposition of this language is either true in every simply
in�nite system and therefore a semantical consequence of the
second-order Peano-axioms, or the same holds for its negation.

Therefore, second-order Peano arithmetics (the set of semantical

consequences of second-order Peano axioms) is negation
complete.
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Metalogical consequences

Gödel's �rst incompleteness theorem: There is no
negation-complete axiomatic extension of �rst-order Peano
Arithmetics.

Semantical completeness of a logical calculus: every semantical
consequence of any set of premises can be derived in the
calculus. First-order logic does have a semantically complete
calculus (GÖDEL 1930).

Second-order logic cannot have a semantically complete
calculus. Because if it had, then we could derive every
semantical consequence from the second-order Peano axioms an
we got a negation complete axiomatic extension of �rst-order
Peano arithmetics.
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Some additional remarks

A simpler proof of the impossibility of a semantically complete
second-order logical calculus: the semantical consequence
relation of second-order logic is not compact. There are valid
inferences with in�nitely many premises where the conclusion
does not follow from any �nite subset of the premises.

What is arithmetical truth? A simple-looking answer: a theorem
of second-order PA. But the appearance of simplicity is
misleading here.
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