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Philosophers about mathematics: method, subject,

certainty

Aristotle, Posterior Analytics about `demonstrative science':

It sets out from �rst principles (arkhai) that are true and
even clearer, better known and more certain that the
theorems.

The theorems inherit the truth of the arkhai via the
(absolutely reliable) rules of logic.

Therefore, demonstrative science consists of undoubtedly true
statements.

The description of demonstrative science corresponds well to the
construction of mathematics in Euclid's Elements.

This picture about mathematics may be called the dogmatic
view.
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Plato about mathematics: a sceptic view

The arkhai are (plausible) hypotheses that we accept if (or
until) they don't led to contradictions.

They can be always revisited (although the mathematicians
don't want to know about that).

Mathematical objects are ideal: they exist not in space and
time, they are not accessible by the senses but by reason only.

Figures or calculi (little stones used to exemplify numbers) are
just auxiliary tools to help our reason.
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Early modern developments

Dogmatic view: almost exclusively dominant until the middle of
19th century.
Mathematics:

is about some special objects and structures: numbers and
space;

bases on infallible �rst principles;

proves its theorems from these principles by logical
deduction.

Where come the (true and indubitable) arkhai from?

Aristotle: experience. Descartes: intuition.

Early modern philosophy from Hume on: experience can't teach
us necessary and general knowledge.

Leibniz, Hume: mathematical knowledge is purely
conceptual/logical knowledge.

Mathematics is nothing but further developed logic.
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Kant

Mathematics is not purely logical (analytic) because it is about
objects that are given by intuition. But it is not empirical,
either.

Mathematics is synthetic a priori: it is based on the pure
intuition of space and time.

The fundamental truths are based on the properties of human
cognitive capacity.
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Problems and tendencies in 19th century mathematics 1.:

Calculus

Di�erential- and integral calculus is the most successful area of
applied mathematics. But it lacks solid, Euclidian foundations.

Bolzano (Paradoxes of in�nity, 1853) quotes the following
`deduction':

1− 1 + 1− 1 + . . . = x

x = 1− x

Therefore, x = 1/2

Bolzano's remark: it should be proven that there is a number
which is the sum of the series.
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Bolzano on in�nite quantities

Bolzano's theorem:
If a function is continuous in a closed interval and has opposite
signs at the two ends of the interval, then it has a zero place
inside the interval.
It seems to be obvious by the naive notion of continuous
function.

Bolzano: the paradoxes of in�nite(ly small or large) quantities
can be resolved by scrupulous (re-)de�ning of the basic concepts
and proving everything that seems to be obvious.
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Bolzano on in�nite manifolds

A paradox of in�nite manifolds:
On the one side, the manifold of even natural numbers seems to
be just as large as the set of all natural numbers (because there
is a one-one correspondence).

On the other side, it should be smaller because according to an
axiom of Euclid the whole is always larger than a (real) part of
it.

Bolzano proves in a long and scrupulous way that there is no
way to circumvent this di�culty.

His conclusion: The paradoxes of in�nite pluralities can't be
resolved at all.
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After Bolzano

The paradoxes of calculus get resolved.

A common work of the greatest mathematicians of the 19th
century (Cauchy, Bolzano, Weierstrass, Dedekind and others):
the arithmetization of the calculus.

Dedekind (Continuity and irrational numbers, 1872) de�nes the
continuum of real numbers (based on the natural numbers that
are taken as given).

Bolzano's paradox of manifolds gets resolved by Cantor simply
by rejecting the Euclidean axiom.

Cantor: in�nite manifolds and therefore in�nite numbers are as
real as �nite numbers. They have an arithmetic slightly di�erent
from the arithmetic of �nite numbers.

Theory of in�nite sets, in�nite cardinals and ordinals.
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Remaining problems

How to de�ne the natural numbers?

Why should we think that the theory of natural numbers is free
of paradoxes?

Is the Cantorian concept of set as clear and well supported as it
seems to be?
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Problems and tendencies . . . 2. Geometry

A. Non-euclidian geometries

5th axiom (or 9th postulate) of Euclid:
Take a straight line on the plane and a point that is not
contained in this line. Then there is one and only one straight
line that contains the point and does not intersect with the
previous line (the parallel).

Not as clear and as evident as other axioms of Euclid are
because it is about in�nity.

Equivalent proposition: The sum of the angles of a triangle
equals two rectangles.

It can be proved from other axioms that there is at least one
non-intersecting straight line (resp. the sum of the angles is not
greater than two rectangles).

18th century: many attempts to prove the axiom (typically on
the indirect way).
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The solution: away with the Euclidian axiom

1831: János Bolyai publishes his work on `absolute' and
hyperbolic geometry.

He addresses the Kantian view about geometry in the subtitle:
The absolute science of the space, viewed independently from
the truth or falsity of Euclid's ninth postulate which is never
decidable a priori.

Absolute geometry: Euclid's system without the axiom of
parallels. But it does not answer an important question about
the space.

Hyperbolic (Bolyai-Lobachevsky) geometry: Absolute geometry
+ the negation of the ninth postulate.

Some twenty years later people prove the equiconsistency of
Euclidean and Bolyai-Lobachevsky-geometry (Cayley-Klein
model). Therefore, there is no way to decide which one is the
true science of the space.
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Problems in geometry B.: Hidden axioms in Euclid

Euclid's geometry was the example of perfect deductive theory
for more than 2000 years.

Axiom of (Moritz) Pasch:
Let us have a triangle and a straight line which intersects one
side of the triangle in an inner point. Then the line either
intersects some of the other sides or contains the vertex not
belonging to the �rst side.

This proposition is:

1 evidently true;

2 independent from the other axioms;

3 needed for some theorems of Euclid;

4 never stated explicitly in the Elements.
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How to avoid such accidents?

First, rearrange the system of axioms for geometry, include the
hidden axioms (Hilbert: Grundlagen der Geometrie, 1899)

But what is the warranty against using hidden assumptions in
the future?

We need a logical theory by which we can check every step of a
demonstration. But Aristotelian syllogistic is far too weak for
that.

It was always demanded since Aristotle and Euclid that the
steps of a mathematical demonstration follow with logical
necessity from the previous steps, but it was never de�ned what
does logical consequence mean. The logic of the mathematical
theories was always intuitive/implicit. People accept that some
proposition follow from other propositions without having any
method or background theory to check it.

Another remaining problem.
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