Gödel's First Incompleteness Theorem Original form

András Máté

12.04.2024

András Máté Gödel 12th April

Recapitulation: What we want and what we have

András Máté Gödel 12th Apri

.

Recapitulation: What we want and what we have

Two steps to the first incompleteness theorem:

伺 と く ヨ と く

Recapitulation: What we want and what we have

Two steps to the first incompleteness theorem:

A. If \mathcal{S} is axiomatizable, ω -consistent and every true Σ_0 sentence is provable in \mathcal{S} , then \mathcal{S} is incomplete.

Two steps to the first incompleteness theorem:

- A. If S is axiomatizable, ω -consistent and every true Σ_0 sentence is provable in S, then S is incomplete.
- B. All true Σ_0 -sentences are provable in P.A.

Two steps to the first incompleteness theorem:

- A. If S is axiomatizable, ω -consistent and every true Σ_0 sentence is provable in S, then S is incomplete.
- B. All true Σ_0 -sentences are provable in P.A.

Theorem: Be $A(v_1, v_2)$ a formula that enumerates P^* in S, a the Gödel number of $\forall v_2 \neg A(v_1, v_2)$ and G the sentence $\forall v_2 \neg A(\bar{a}, v_2)$. Then:

- **(**) if S is (simply) consistent, then G is not provable;
- **2** if S is ω -consistent, then G is not refutable, either.

András Máté Gödel 12th April

<ロト <問ト < 臣ト < 臣

1

Step A. to Gödel's theorem

 \mathbf{A}_1 If \mathcal{S} is axiomatizable, ω -consistent and every Σ_1 set is enumerable, then \mathcal{S} is incomplete.

 \mathbf{A}_1 If \mathcal{S} is axiomatizable, ω -consistent and every Σ_1 set is enumerable, then \mathcal{S} is incomplete.

By assumption, S is axiomatizable, i.e. P is Σ_1 . We proved that the adjoint set of any Σ_1 set is Σ_1 , too. Hence P^* is Σ_1 . By assumption, P^* is enumerable and according to the previous propositions, S is incomplete. \mathbf{A}_1 If \mathcal{S} is axiomatizable, ω -consistent and every Σ_1 set is enumerable, then \mathcal{S} is incomplete.

By assumption, S is axiomatizable, i.e. P is Σ_1 . We proved that the adjoint set of any Σ_1 set is Σ_1 , too. Hence P^* is Σ_1 . By assumption, P^* is enumerable and according to the previous propositions, S is incomplete.

 \mathbf{A}_2 If every true Σ_0 sentence is provable in \mathcal{S} , then every Σ_1 set and relation is enumerable.

 \mathbf{A}_1 If \mathcal{S} is axiomatizable, ω -consistent and every Σ_1 set is enumerable, then \mathcal{S} is incomplete.

By assumption, S is axiomatizable, i.e. P is Σ_1 . We proved that the adjoint set of any Σ_1 set is Σ_1 , too. Hence P^* is Σ_1 . By assumption, P^* is enumerable and according to the previous propositions, S is incomplete.

 \mathbf{A}_2 If every true Σ_0 sentence is provable in \mathcal{S} , then every Σ_1 set and relation is enumerable.

If $R(v_1, \ldots, v_n)$ is a Σ_1 relation, then there is an $S(v_1, \ldots, v_n, v_{n+1})$ Σ_0 relation s.t.

$$R(v_1,\ldots,v_n) \leftrightarrow \exists y S(v_1,\ldots,v_n,y)$$

Step A_2 (continuation)

András Máté Gödel 12th April

1

-

Step A_2 (continuation)

Be $F(v_1, \ldots, v_n, v_{n+1})$ the Σ_0 formula expressing S. F enumerates R.

▶ ▲圖▶ ▲厘▶ ▲厘▶

Step A_2 (continuation)

Be $F(v_1, \ldots, v_n, v_{n+1})$ the Σ_0 formula expressing S. F enumerates R.

If $R(k_1, \ldots, k_n)$ holds, then for some $k, S(k_1, \ldots, k_n, k)$ holds and therefore the Σ_0 sentence $F(\bar{k}_1, \ldots, \bar{k}_n, \bar{k})$ is true. By assumption, it is provable. Be $F(v_1, \ldots, v_n, v_{n+1})$ the Σ_0 formula expressing S. F enumerates R.

If $R(k_1, \ldots, k_n)$ holds, then for some $k, S(k_1, \ldots, k_n, k)$ holds and therefore the Σ_0 sentence $F(\bar{k}_1, \ldots, \bar{k}_n, \bar{k})$ is true. By assumption, it is provable.

If $R(k_1, \ldots, k_n)$ does not hold, then for no k holds $S(k_1, \ldots, k_n, k)$. Therefore for any k, the sentence $F(\bar{k}_1, \ldots, \bar{k}_n, \bar{k})$ is false. Its negation is true and Σ_0 , therefore provable, and the sentence itself is refutable.

(1日) (1日) (1日)

Be $F(v_1, \ldots, v_n, v_{n+1})$ the Σ_0 formula expressing S. F enumerates R.

If $R(k_1, \ldots, k_n)$ holds, then for some $k, S(k_1, \ldots, k_n, k)$ holds and therefore the Σ_0 sentence $F(\bar{k}_1, \ldots, \bar{k}_n, \bar{k})$ is true. By assumption, it is provable.

If $R(k_1, \ldots, k_n)$ does not hold, then for no k holds $S(k_1, \ldots, k_n, k)$. Therefore for any k, the sentence $F(\bar{k}_1, \ldots, \bar{k}_n, \bar{k})$ is false. Its negation is true and Σ_0 , therefore provable, and the sentence itself is refutable.

From \mathbf{A}_1 and \mathbf{A}_2 it follows

A. If S is axiomatizable, ω -consistent and every true Σ_0 sentence is provable in S, then S is incomplete.

▲掃▶ ▲ 国▶ ▲ 国▶

A 'self-strengthening' of A.

András Máté Gödel 12th April

1

A 'self-strengthening' of A.

 \mathbf{A}^* : If \mathcal{S} is axiomatizable, ω -consistent and no false Σ_0 sentence is provable in \mathcal{S} , then \mathcal{S} is incomplete.

A 'self-strengthening' of A.

 \mathbf{A}^* : If \mathcal{S} is axiomatizable, ω -consistent and no false Σ_0 sentence is provable in \mathcal{S} , then \mathcal{S} is incomplete.

If every true Σ_0 sentence is provable, then S is incomplete by A. If not, then there is a true Σ_0 sentence A that is not provable, and $\neg A$ is not provable, either, because it is false. \mathbf{A}^* : If \mathcal{S} is axiomatizable, ω -consistent and no false Σ_0 sentence is provable in \mathcal{S} , then \mathcal{S} is incomplete.

If every true Σ_0 sentence is provable, then S is incomplete by A. If not, then there is a true Σ_0 sentence A that is not provable, and $\neg A$ is not provable, either, because it is false.

Another proof for A^* :

Be S axiomatizable, R(x, y) an arbitrary Σ_0 relation with the domain P^* , $A(v_1, v_2)$ the Σ_0 formula expressing it, a the Gödel number of the formula $\forall v_2 \neg A(v_1, v_2)$ and G the sentence $\forall v_2 \neg A(\bar{a}, v_2)$.

 \mathbf{A}^* : If \mathcal{S} is axiomatizable, ω -consistent and no false Σ_0 sentence is provable in \mathcal{S} , then \mathcal{S} is incomplete.

If every true Σ_0 sentence is provable, then S is incomplete by A. If not, then there is a true Σ_0 sentence A that is not provable, and $\neg A$ is not provable, either, because it is false.

Another proof for A^* :

Be S axiomatizable, R(x, y) an arbitrary Σ_0 relation with the domain P^* , $A(v_1, v_2)$ the Σ_0 formula expressing it, a the Gödel number of the formula $\forall v_2 \neg A(v_1, v_2)$ and G the sentence $\forall v_2 \neg A(\bar{a}, v_2)$.

1. Suppose G is provable. Then $a \in P^*$, therefore there is an n s.t. $A(\bar{a}, \bar{n})$ is true (because a is in the domain of R). But G entails the sentence $\neg A(\bar{a}, \bar{n})$ that is a false Σ_0 sentence.

A (10) < A (10) </p>

A^{*}, continuation

András Máté Gödel 12th April

E

2. Suppose that G is refutable and S is ω -consistent. Now $\exists y A(\bar{a}, y)$ is provable. By ω -consistency, there is an n s.t. $\neg A(\bar{a}, \bar{n})$ is not provable. S is consistent, therefore G is not provable, $a \notin P^*$ and $A(\bar{a}, \bar{m})$ is false for any m. So $\neg A(\bar{a}, \bar{n})$ is a true but not provable Σ_0 sentence.

2. Suppose that G is refutable and S is ω -consistent. Now $\exists y A(\bar{a}, y)$ is provable. By ω -consistency, there is an n s.t. $\neg A(\bar{a}, \bar{n})$ is not provable. S is consistent, therefore G is not provable, $a \notin P^*$ and $A(\bar{a}, \bar{m})$ is false for any m. So $\neg A(\bar{a}, \bar{n})$ is a true but not provable Σ_0 sentence.

3. Assume now that S is complete, consistent and no false Σ_0 sentence is provable. Then by 1., G is not provable. By completeness, it is refutable but every true Σ_0 sentence is provable. Therefore by 2., S is ω -inconsistent.

Homeworks

András Máté Gödel 12th April

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

E

Homeworks

• Prove that if all true Σ_0 sentences are provable in S, and S is ω -consistent, then all Σ_1 sets are representable.

2 Be $F(v_1, v_2)$ a formula that represents the same relation that it expresses. Suppose that for every m and n, $F(\bar{n}, \bar{m})$ is either provable or refutable, and S is ω -consistent. Prove that $\exists v_2 F(v_1, v_2)$ represents the same set that it expresses.

Prove the following dual of the second Theorem of the previous class:

Suppose $B(v_1, v_2)$ a formula that enumerates R^* in S, b the Gödel number of $\exists v_2 B(v_1, v_2)$ and G the sentence $\forall v_2 \neg B(\bar{b}, v_2)$. Then:

- if S is (simply) consistent, then G is not provable;
- **2** if S is ω -consistent, then G is not refutable, either.

Remember our strategy

András Máté Gödel 12th April

Two steps to this aim:

Two steps to this aim:

A. If \mathcal{S} is axiomatizable, ω -consistent and every true Σ_0 sentence is provable in \mathcal{S} , then \mathcal{S} is incomplete.

Two steps to this aim:

- A. If \mathcal{S} is axiomatizable, ω -consistent and every true Σ_0 sentence is provable in \mathcal{S} , then \mathcal{S} is incomplete.
- B. All true Σ_0 -sentences are provable in P.A.

Two steps to this aim:

- A. If S is axiomatizable, ω -consistent and every true Σ_0 sentence is provable in S, then S is incomplete.
- B. All true Σ_0 -sentences are provable in P.A.

We did prove **A** (and even the stronger theorem \mathbf{A}^* : If \mathcal{S} is axiomatizable, ω -consistent and no false Σ_0 sentence is provable in \mathcal{S} , then \mathcal{S} is incomplete.)

Two steps to this aim:

- A. If S is axiomatizable, ω -consistent and every true Σ_0 sentence is provable in S, then S is incomplete.
- B. All true Σ_0 -sentences are provable in P.A.

We did prove **A** (and even the stronger theorem \mathbf{A}^* : If \mathcal{S} is axiomatizable, ω -consistent and no false Σ_0 sentence is provable in \mathcal{S} , then \mathcal{S} is incomplete.)

Now we should prove \mathbf{B} .

A sufficient pair of conditions for Σ_0 -completeness

András Máté Gödel 12th Apri

A sufficient pair of conditions for Σ_0 -completeness

S is $\underline{\Sigma_0\text{-complete}}$ if every true $\underline{\Sigma_0\text{-sentence}}$ is provable. A $\underline{\Sigma_0\text{-sentence}}$ is correctly decidable in S if it is either true and provable or false and refutable. S is $\underline{\Sigma_0$ -complete} if every true $\underline{\Sigma_0}$ -sentence is provable. A $\underline{\Sigma_0}$ -sentence is correctly decidable in S if it is either true and provable or false and refutable.

Suppose

 C_1 Every atomic Σ_0 -sentence is correctly decidable;

 C_2 If F(w) is a Σ_0 -formula with the only free variable w and $F(\bar{0}), \ldots, F(\bar{n})$ are all provable, then $(\forall w \leq n)F(w)$ is provable, too.

Then \mathcal{S} is Σ_0 -complete.

S is $\underline{\Sigma_0$ -complete} if every true $\underline{\Sigma_0}$ -sentence is provable. A $\underline{\Sigma_0}$ -sentence is correctly decidable in S if it is either true and provable or false and refutable.

Suppose

 C_1 Every atomic Σ_0 -sentence is correctly decidable;

 C_2 If F(w) is a Σ_0 -formula with the only free variable w and $F(\bar{0}), \ldots, F(\bar{n})$ are all provable, then $(\forall w \leq n)F(w)$ is provable, too.

Then \mathcal{S} is Σ_0 -complete.

Prove that every Σ_0 -sentence is correctly decidable by induction on the degree of the sentence.

András Máté Gödel 12th Apri

Suppose

- D_1 Every true atomic Σ_0 -sentence is provable;
- D_2 If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;
- D_3 For any variable w and number n, the formula

$$w \le \bar{n} \to (w = \bar{0} \lor \ldots \lor w = \bar{n})$$

is provable. Then our system is Σ_0 -complete.

Suppose

 D_1 Every true atomic Σ_0 -sentence is provable;

 D_2 If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;

 D_3 For any variable w and number n, the formula

$$w \le \bar{n} \to (w = \bar{0} \lor \ldots \lor w = \bar{n})$$

is provable. Then our system is Σ_0 -complete.

 C_1 and C_2 follow from these three conditions. E.g. for C_1 we need only that every P false atomic Σ_0 -sentence is refutable.

Suppose

 D_1 Every true atomic Σ_0 -sentence is provable;

 D_2 If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;

 D_3 For any variable w and number n, the formula

$$w \le \bar{n} \to (w = \bar{0} \lor \ldots \lor w = \bar{n})$$

is provable. Then our system is Σ_0 -complete.

 C_1 and C_2 follow from these three conditions. E.g. for C_1 we need only that every P false atomic Σ_0 -sentence is refutable.

• If P is of the form $\bar{n} = \bar{m}$, then it follows from D_2 .

Suppose

 D_1 Every true atomic Σ_0 -sentence is provable;

 D_2 If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;

 D_3 For any variable w and number n, the formula

$$w \le \bar{n} \to (w = \bar{0} \lor \ldots \lor w = \bar{n})$$

is provable. Then our system is Σ_0 -complete.

 C_1 and C_2 follow from these three conditions. E.g. for C_1 we need only that every P false atomic Σ_0 -sentence is refutable.

- If P is of the form $\bar{n} = \bar{m}$, then it follows from D_2 .
- If P is $m \leq n$, then the sentences $\overline{m} = \overline{0}, \ldots, \overline{m} = \overline{n}$ are all false and by D_2 , refutable. Substitute \overline{m} for w in D_3 .

Suppose

 D_1 Every true atomic Σ_0 -sentence is provable;

 D_2 If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;

 D_3 For any variable w and number n, the formula

$$w \le \bar{n} \to (w = \bar{0} \lor \ldots \lor w = \bar{n})$$

is provable. Then our system is Σ_0 -complete.

 C_1 and C_2 follow from these three conditions. E.g. for C_1 we need only that every P false atomic Σ_0 -sentence is refutable.

- If P is of the form $\bar{n} = \bar{m}$, then it follows from D_2 .
- If P is $m \leq n$, then the sentences $\overline{m} = \overline{0}, \ldots, \overline{m} = \overline{n}$ are all false and by D_2 , refutable. Substitute \overline{m} for w in D_3 .
- If P is $\overline{m} + \overline{n} = \overline{k}$, then for some $l \neq k$, $\overline{m} + \overline{n} = \overline{l}$ is true and by D_1 , provable. By D_2 , $\overline{k} \neq \overline{l}$ is provable, too, and they imply $\neg P$.

▲掃▶ ▲注▶ ▲注▶

Suppose

 D_1 Every true atomic Σ_0 -sentence is provable;

- D_2 If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;
- D_3 For any variable w and number n, the formula

$$w \le \bar{n} \to (w = \bar{0} \lor \ldots \lor w = \bar{n})$$

is provable. Then our system is Σ_0 -complete.

 C_1 and C_2 follow from these three conditions. E.g. for C_1 we need only that every P false atomic Σ_0 -sentence is refutable.

- If P is of the form $\bar{n} = \bar{m}$, then it follows from D_2 .
- If P is $m \leq n$, then the sentences $\overline{m} = \overline{0}, \ldots, \overline{m} = \overline{n}$ are all false and by D_2 , refutable. Substitute \overline{m} for w in D_3 .
- If P is $\overline{m} + \overline{n} = \overline{k}$, then for some $l \neq k$, $\overline{m} + \overline{n} = \overline{l}$ is true and by D_1 , provable. By D_2 , $\overline{k} \neq \overline{l}$ is provable, too, and they imply $\neg P$.
- Similarly for a P of the form $\bar{m} \cdot \bar{n} = \bar{k}_{+}$

András Máté Gödel 12th April

(Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).

- (Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).
- (Q_0) Drop the axiom $N_9: v_1 \leq v_2 \lor v_2 \leq v_1$ from (Q).

- (Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).
- (Q_0) Drop the axiom $N_9: v_1 \leq v_2 \lor v_2 \leq v_1$ from (Q).
 - (R) Non-logical axioms are instances of the following 5 schemes:

$$\begin{array}{ll} \Omega_1 & \bar{m} + \bar{n} = \bar{k}, \text{ where } m + n = k. \\ \Omega_2 & \bar{m} \cdot \bar{n} = \bar{k}, \text{ where } m * n = k. \\ \Omega_3 & \bar{m} \neq \bar{n}, \text{ where } m \text{ and } n \text{ are distinct numbers} \\ \Omega_4 & v_1 \leq \bar{n} \leftrightarrow v_1 = \bar{0} \lor \ldots \lor v_1 = \bar{n} \\ \Omega_5 & v_1 \leq \bar{n} \lor \bar{n} \leq v_1 \end{array}$$

- (Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).
- (Q_0) Drop the axiom $N_9: v_1 \leq v_2 \lor v_2 \leq v_1$ from (Q).
 - (R) Non-logical axioms are instances of the following 5 schemes:

$$\begin{array}{ll} \Omega_1 & \bar{m} + \bar{n} = \bar{k}, \text{ where } m + n = k. \\ \Omega_2 & \bar{m} \cdot \bar{n} = \bar{k}, \text{ where } m * n = k. \\ \Omega_3 & \bar{m} \neq \bar{n}, \text{ where } m \text{ and } n \text{ are distinct numbers} \\ \Omega_4 & v_1 \leq \bar{n} \leftrightarrow v_1 = \bar{0} \lor \ldots \lor v_1 = \bar{n} \\ \Omega_5 & v_1 \leq \bar{n} \lor \bar{n} \leq v_1 \end{array}$$

 (R_0) Ω_5 can be dropped again.

- (Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).
- (Q_0) Drop the axiom $N_9: v_1 \leq v_2 \lor v_2 \leq v_1$ from (Q).
 - (R) Non-logical axioms are instances of the following 5 schemes:

$$\begin{array}{ll} \Omega_1 & \bar{m} + \bar{n} = k, \text{ where } m + n = k. \\ \Omega_2 & \bar{m} \cdot \bar{n} = \bar{k}, \text{ where } m * n = k. \\ \Omega_3 & \bar{m} \neq \bar{n}, \text{ where } m \text{ and } n \text{ are distinct numbers} \\ \Omega_4 & v_1 \leq \bar{n} \leftrightarrow v_1 = \bar{0} \lor \ldots \lor v_1 = \bar{n} \\ \Omega_5 & v_1 \leq \bar{n} \lor \bar{n} \leq v_1 \end{array}$$

 (R_0) Ω_5 can be dropped again.

 (R_0) is Σ_0 -complete because it satisfies the *D* conditions.

- (Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).
- (Q_0) Drop the axiom $N_9: v_1 \leq v_2 \lor v_2 \leq v_1$ from (Q).
 - (R) Non-logical axioms are instances of the following 5 schemes:

$$\begin{array}{ll} \Omega_1 & \bar{m} + \bar{n} = \bar{k}, \text{ where } m + n = k. \\ \Omega_2 & \bar{m} \cdot \bar{n} = \bar{k}, \text{ where } m * n = k. \\ \Omega_3 & \bar{m} \neq \bar{n}, \text{ where } m \text{ and } n \text{ are distinct numbers.} \\ \Omega_4 & v_1 \leq \bar{n} \leftrightarrow v_1 = \bar{0} \lor \ldots \lor v_1 = \bar{n} \\ \Omega_5 & v_1 \leq \bar{n} \lor \bar{n} \leq v_1 \end{array}$$

 (R_0) Ω_5 can be dropped again.

 (R_0) is Σ_0 -complete because it satisfies the *D* conditions.

 (R_0) is a subsystem of (Q_0) and (R) is a subsystem of (Q). We need metalanguage induction to prove that the axioms of (R) are provable in (Q).

Step B. and Gödel's Theorem

András Máté Gödel 12th April

<ロト <問ト < 臣ト < 臣

Theorem (B.): The systems (R_0) , (R), (Q_0) , (Q) and P.A. are all Σ_0 -complete.

▲御▶ ▲ 国▶ ▲

Theorem (B.): The systems (R_0) , (R), (Q_0) , (Q) and P.A. are all Σ_0 -complete.

Gödel's first incompleteness-theorem: If P.A. is ω -consistent, then it is incomplete. From A. and B. **Theorem** (B.): The systems (R_0) , (R), (Q_0) , (Q) and P.A. are all Σ_0 -complete.

Gödel's first incompleteness-theorem: If P.A. is ω -consistent, then it is incomplete. From A. and B.

There is a Σ_0 formula $A(v_1, v_2)$ which enumerates P^* in P.A. $E_a = \forall v_2 \neg A(v_1, v_2)$ is a formula whose negation represents P^* . $G = \forall v_2 \neg A(\bar{a}, v_2)$ is not provable in P.A. if P.A. is consistent and it is not refutable, either if P.A. is ω -consistent.