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Recapitulation: What we want and what we have

Two steps to the �rst incompleteness theorem:

A. If S is axiomatizable, ω-consistent and every true Σ0

sentence is provable in S, then S is incomplete.

B. All true Σ0-sentences are provable in P.A.

Theorem: Be A(v1, v2) a formula that enumerates P ∗ in S, a
the Gödel number of ∀v2¬A(v1, v2) and G the sentence

∀v2¬A(ā, v2) . Then:

1 if S is (simply) consistent, then G is not provable;

2 if S is ω-consistent, then G is not refutable, either.
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Step A. to Gödel's theorem

A1 If S is axiomatizable, ω-consistent and every Σ1 set is

enumerable, then S is incomplete.

By assumption, S is axiomatizable, i.e. P is Σ1. We proved that

the adjoint set of any Σ1 set is Σ1, too. Hence P ∗ is Σ1. By

assumption, P ∗ is enumerable and according to the previous

propositions, S is incomplete.

A2 If every true Σ0 sentence is provable in S, then every Σ1 set

and relation is enumerable.

If R(v1, . . . , vn) is a Σ1 relation, then there is an

S(v1, . . . , vn, vn+1) Σ0 relation s.t.

R(v1, . . . , vn) ↔ ∃yS(v1, . . . , vn, y)
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Step A2 (continuation)

Be F (v1, . . . , vn, vn+1) the Σ0 formula expressing S.
F enumerates R.

If R(k1, . . . , kn) holds, then for some k, S(k1, . . . , kn, k) holds
and therefore the Σ0 sentence F (k̄1, . . . .k̄n, k̄) is true. By
assumption, it is provable.

If R(k1, . . . , kn) does not hold, then for no k holds

S(k1, . . . , kn, k). Therefore for any k, the sentence
F (k̄1, . . . .k̄n, k̄) is false. Its negation is true and Σ0, therefore

provable, and the sentence itself is refutable.

From A1 and A2 it follows

A. If S is axiomatizable, ω-consistent and every true Σ0

sentence is provable in S, then S is incomplete.
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A `self-strengthening' of A.

A∗: If S is axiomatizable, ω-consistent and no false Σ0 sentence

is provable in S, then S is incomplete.

If every true Σ0 sentence is provable, then S is incomplete by A.

If not, then there is a true Σ0 sentence A that is not provable,

and ¬A is not provable, either, because it is false.

Another proof for A∗:
Be S axiomatizable, R(x, y) an arbitrary Σ0 relation with the

domain P ∗, A(v1, v2) the Σ0 formula expressing it, a the Gödel

number of the formula ∀v2¬A(v1, v2) and G the sentence

∀v2¬A(ā, v2).

1. Suppose G is provable. Then a ∈ P ∗, therefore there is an n
s.t. A(ā, n̄) is true (because a is in the domain of R). But G
entails the sentence ¬A(ā, n̄) that is a false Σ0 sentence.
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A∗, continuation

2. Suppose that G is refutable and S is ω-consistent. Now
∃yA(ā, y) is provable. By ω-consistency, there is an n s.t.

¬A(ā, n̄) is not provable. S is consistent, therefore G is not

provable, a ̸∈ P ∗ and A(ā, m̄) is false for any m. So ¬A(ā, n̄) is
a true but not provable Σ0 sentence.

3. Assume now that S is complete, consistent and no false Σ0

sentence is provable. Then by 1., G is not provable. By

completeness, it is refutable but every true Σ0 sentence is

provable. Therefore by 2., S is ω-inconsistent.
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a true but not provable Σ0 sentence.

3. Assume now that S is complete, consistent and no false Σ0

sentence is provable. Then by 1., G is not provable. By

completeness, it is refutable but every true Σ0 sentence is

provable. Therefore by 2., S is ω-inconsistent.

András Máté Gödel 12th April



Homeworks

1 Prove that if all true Σ0 sentences are provable in S, and S
is ω-consistent, then all Σ1 sets are representable.

2 Be F (v1, v2) a formula that represents the same relation

that it expresses. Suppose that for every m and n, F (n̄, m̄)
is either provable or refutable, and S is ω-consistent. Prove
that ∃v2F (v1, v2) represents the same set that it expresses.

3 Prove the following dual of the second Theorem of the

previous class:
Suppose B(v1, v2) a formula that enumerates R∗ in S, b the
Gödel number of ∃v2B(v1, v2) and G the sentence
∀v2¬B(b̄, v2) . Then:

1 if S is (simply) consistent, then G is not provable;
2 if S is ω-consistent, then G is not refutable, either.
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Remember our strategy

Aim: to prove that if P.A. is ω-consistent, then it is incomplete.

(Gödel's original result.)

Two steps to this aim:

A. If S is axiomatizable, ω-consistent and every true Σ0

sentence is provable in S, then S is incomplete.

B. All true Σ0-sentences are provable in P.A.

We did prove A (and even the stronger theorem A∗: If S is

axiomatizable, ω-consistent and no false Σ0 sentence is provable

in S, then S is incomplete.)

Now we should prove B.
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A su�cient pair of conditions for Σ0-completeness

S is Σ0-complete if every true Σ0-sentence is provable.

A Σ0-sentence is correctly decidable in S if it is either true and

provable or false and refutable.

Suppose

C1 Every atomic Σ0-sentence is correctly decidable;

C2 If F (w) is a Σ0-formula with the only free variable w and

F (0̄), . . . , F (n̄) are all provable, then (∀w ≤ n)F (w) is
provable, too.

Then S is Σ0-complete.

Prove that every Σ0-sentence is correctly decidable by induction

on the degree of the sentence.
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F (0̄), . . . , F (n̄) are all provable, then (∀w ≤ n)F (w) is
provable, too.

Then S is Σ0-complete.

Prove that every Σ0-sentence is correctly decidable by induction

on the degree of the sentence.
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Another su�cient condition of Σ0-completeness

Suppose

D1 Every true atomic Σ0-sentence is provable;

D2 If m and n are distinct numbers, then n̄ ̸= m̄ is provable;

D3 For any variable w and number n, the formula

w ≤ n̄ → (w = 0̄ ∨ . . . ∨ w = n̄)

is provable. Then our system is Σ0-complete.

C1 and C2 follow from these three conditions. E.g. for C1 we

need only that every P false atomic Σ0-sentence is refutable.

If P is of the form n̄ = m̄, then it follows from D2.

If P is m ≤ n, then the sentences m̄ = 0̄, . . . , m̄ = n̄ are all

false and by D2, refutable. Substitute m̄ for w in D3.

If P is m̄+ n̄ = k̄, then for some l ̸= k, m̄+ n̄ = l̄ is true
and by D1, provable. By D2, k̄ ̸= l̄ is provable, too, and
they imply ¬P .

Similarly for a P of the form m̄ · n̄ = k̄.
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Σ0-complete subsystems of P.A.

(Q) P.A. without the induction scheme (i.e., 9 singular

arithmetic axioms).

(Q0) Drop the axiom N9: v1 ≤ v2 ∨ v2 ≤ v1 from (Q).

(R) Non-logical axioms are instances of the following 5 schemes:

Ω1 m̄+ n̄ = k̄, where m+ n = k.
Ω2 m̄ · n̄ = k̄, where m ∗ n = k.
Ω3 m̄ ̸= n̄, where m and n are distinct numbers.
Ω4 v1 ≤ n̄ ↔ v1 = 0̄ ∨ . . . ∨ v1 = n̄
Ω5 v1 ≤ n̄ ∨ n̄ ≤ v1

(R0) Ω5 can be dropped again.

(R0) is Σ0-complete because it satis�es the D conditions.

(R0) is a subsystem of (Q0) and (R) is a subsystem of (Q). We

need metalanguage induction to prove that the axioms of (R)
are provable in (Q).
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Step B. and Gödel's Theorem

Theorem (B.): The systems (R0), (R), (Q0), (Q) and P.A. are

all Σ0-complete.

Gödel's �rst incompleteness-theorem: If P.A. is

ω-consistent, then it is incomplete.

From A. and B.

There is a Σ0 formula A(v1, v2) which enumerates P ∗ in P.A.

Ea = ∀v2¬A(v1, v2) is a formula whose negation represents P ∗.
G = ∀v2¬A(ā, v2) is not provable in P.A. if P.A. is consistent

and it is not refutable, either if P.A. is ω-consistent.
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