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Recapitulation: What we want and what we have

Two steps to the first incompleteness theorem:

A. If § is axiomatizable, w-consistent and every true g
sentence is provable in S, then S is incomplete.

B. All true Xg-sentences are provable in P.A.

Theorem: Be A(v;,v2) a formula that enumerates P* in S, a
the Godel number of Yvy—A(v1,v2) and G the sentence
Vve—A(a,va) . Then:

@ if S is (simply) consistent, then G is not provable;

Q if S is w-consistent, then G is not refutable, either.
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Step A. to Godel’s theorem

A, If § is axiomatizable, w-consistent and every X set is
enumerable, then S is incomplete.
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Step A. to Godel’s theorem

A, If § is axiomatizable, w-consistent and every X set is
enumerable, then S is incomplete.

By assumption, S is axiomatizable, i.e. P is ;. We proved that
the adjoint set of any X1 set is 31, too. Hence P* is 3. By
assumption, P* is enumerable and according to the previous
propositions, S is incomplete.
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Step A. to Godel’s theorem

A, If § is axiomatizable, w-consistent and every X set is
enumerable, then S is incomplete.

By assumption, S is axiomatizable, i.e. P is ;. We proved that
the adjoint set of any X1 set is 31, too. Hence P* is 3. By
assumption, P* is enumerable and according to the previous
propositions, S is incomplete.

A, If every true Xg sentence is provable in S, then every i set
and relation is enumerable.

If R(vy,...,vy) is a ¥ relation, then there is an
S(v1, ..., Up, Upt1) B relation s.t.

R(v1,...,v,) > FyS(v1,...,n,y)
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Step Az (continuation)

Be F(v1,...,Un, Unt1) the Xg formula expressing S.
F' enumerates R.
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Step Az (continuation)

Be F(v1,...,Un, Unt1) the Xg formula expressing S.
F' enumerates R.

If R(ky,...,k,) holds, then for some k, S(ki,...,kn, k) holds
and therefore the Y sentence F(ky, ... .k,, k) is true. By
assumption, it is provable.
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Step Az (continuation)

Be F(v1,...,Un, Unt1) the Xg formula expressing S.
F' enumerates R.

If R(ky,...,k,) holds, then for some k, S(ki,...,kn, k) holds
and therefore the Y sentence F(ky, ... .k,, k) is true. By
assumption, it is provable.

If R(k1,...,k,) does not hold, then for no k holds
S(ky,... sk, l_<:) Therefore for any k, the sentence

F(ky,....kn, k) is false. Its negation is true and g, therefore
provable, and the sentence itself is refutable.
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Step Az (continuation)

Be F(v1,...,Un, Unt1) the Xg formula expressing S.
F' enumerates R.

If R(ky,...,k,) holds, then for some k, S(ki,...,kn, k) holds
and therefore the Y sentence F(ky, ... .k,, k) is true. By
assumption, it is provable.

If R(k1,...,k,) does not hold, then for no k holds
S(ky,... sk, l_<:) Therefore for any k, the sentence

F(ky,....kn, k) is false. Its negation is true and g, therefore
provable, and the sentence itself is refutable.

From A7 and A, it follows

A. If § is axiomatizable, w-consistent and every true X
sentence is provable in §, then & is incomplete.
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A ‘self-strengthening’ of A.

A*: If § is axiomatizable, w-consistent and no false ¥y sentence
is provable in S, then § is incomplete.
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A ‘self-strengthening’ of A.
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is provable in S, then § is incomplete.

If every true Xg sentence is provable, then S is incomplete by A.
If not, then there is a true X sentence A that is not provable,
and —A is not provable, either, because it is false.
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A ‘self-strengthening’ of A.
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is provable in S, then § is incomplete.

If every true Xg sentence is provable, then S is incomplete by A.
If not, then there is a true X sentence A that is not provable,
and —A is not provable, either, because it is false.

Another proof for A*:

Be S axiomatizable, R(x,y) an arbitrary ¥y relation with the
domain P*, A(v1,vs) the 3¢ formula expressing it, a the Godel
number of the formula Vve—A(vi,v2) and G the sentence
VUFA(&, Ug).
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A ‘self-strengthening’ of A.

A*: If § is axiomatizable, w-consistent and no false ¥y sentence
is provable in S, then § is incomplete.

If every true Xg sentence is provable, then S is incomplete by A.
If not, then there is a true X sentence A that is not provable,
and —A is not provable, either, because it is false.

Another proof for A*:

Be S axiomatizable, R(x,y) an arbitrary ¥y relation with the
domain P*, A(v1,vs) the 3¢ formula expressing it, a the Godel
number of the formula Vve—A(vi,v2) and G the sentence
VUFA(&, Ug).

1. Suppose G is provable. Then a € P*, therefore there is an n
s.t. A(a,n) is true (because a is in the domain of R). But G
entails the sentence —A(a,n) that is a false Xy sentence.
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A*, continuation

2. Suppose that G is refutable and § is w-consistent. Now
JyA(a,y) is provable. By w-consistency, there is an n s.t.
—A(a,n) is not provable. S is consistent, therefore G is not
provable, a ¢ P* and A(a,m) is false for any m. So —A(a, n) is
a true but not provable g sentence.
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A*, continuation

2. Suppose that G is refutable and § is w-consistent. Now
JyA(a,y) is provable. By w-consistency, there is an n s.t.
—A(a,n) is not provable. S is consistent, therefore G is not
provable, a ¢ P* and A(a,m) is false for any m. So —A(a, n) is
a true but not provable g sentence.

3. Assume now that S is complete, consistent and no false ¥
sentence is provable. Then by 1., G is not provable. By
completeness, it is refutable but every true ¥g sentence is
provable. Therefore by 2., § is w-inconsistent.
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Homeworks

@ Prove that if all true 3 sentences are provable in S, and S
is w-consistent, then all 3; sets are representable.
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Homeworks

@ Be F(v1,v2) a formula that represents the same relation
that it expresses. Suppose that for every m and n, F(n,m)
is either provable or refutable, and S is w-consistent. Prove
that Jua F'(v1, v2) represents the same set that it expresses.
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Homeworks

@ Prove the following dual of the second Theorem of the
previous class:
Suppose B(v1,v2) a formula that enumerates R* in S, b the
Godel number of JvaB(vi,v2) and G the sentence
Vve—B(b,v2) . Then:
0@ if S is (simply) consistent, then G is not provable;
@ if S is w-consistent, then G is not refutable, either.
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(Godel’s original result.)
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Remember our strategy

Aim: to prove that if P.A. is w-consistent, then it is incomplete.
(Godel’s original result.)
Two steps to this aim:

A. If § is axiomatizable, w-consistent and every true g
sentence is provable in S, then S is incomplete.

B. All true Xg-sentences are provable in P.A.

We did prove A (and even the stronger theorem A*: If S is
axiomatizable, w-consistent and no false ¥y sentence is provable
in S, then S is incomplete.)
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Remember our strategy

Aim: to prove that if P.A. is w-consistent, then it is incomplete.
(Godel’s original result.)
Two steps to this aim:

A. If § is axiomatizable, w-consistent and every true g
sentence is provable in S, then S is incomplete.

B. All true Xg-sentences are provable in P.A.

We did prove A (and even the stronger theorem A*: If S is
axiomatizable, w-consistent and no false ¥y sentence is provable
in S, then S is incomplete.)

Now we should prove B.
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A sufficient pair of conditions for >y-completeness

S is ¥p-complete if every true Ygp-sentence is provable.
A Yp-sentence is correctly decidable in S if it is either true and
provable or false and refutable.
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A sufficient pair of conditions for >y-completeness

S is ¥p-complete if every true Ygp-sentence is provable.
A Yp-sentence is correctly decidable in S if it is either true and
provable or false and refutable.

Suppose
C1 Every atomic Yg-sentence is correctly decidable;

Cy If F(w) is a ¥p-formula with the only free variable w and
F(0),...,F(n) are all provable, then (Vw < n)F(w) is
provable, too.

Then § is Yp-complete.
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A sufficient pair of conditions for >y-completeness

S is ¥p-complete if every true Ygp-sentence is provable.
A Yp-sentence is correctly decidable in S if it is either true and
provable or false and refutable.

Suppose

C1 Every atomic Yg-sentence is correctly decidable;

Cy If F(w) is a ¥p-formula with the only free variable w and
F(0),...,F(n) are all provable, then (Vw < n)F(w) is
provable, too.

Then § is Yp-complete.

Prove that every Yp-sentence is correctly decidable by induction
on the degree of the sentence.
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Another sufficient condition of ¥-completeness

Suppose

Dy Every true atomic Yg-sentence is provable;

Dy If m and n are distinct numbers, then n # m is provable;
D3 For any variable w and number n, the formula

w<ia—=(w=0V...Vw=n)

is provable. Then our system is Yp-complete.
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need only that every P false atomic Yg-sentence is refutable.
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Suppose

Dy Every true atomic Yg-sentence is provable;

Dy If m and n are distinct numbers, then n # m is provable;
D3 For any variable w and number n, the formula

w<ia—=(w=0V...Vw=n)

is provable. Then our system is Yp-complete.
C1 and C) follow from these three conditions. E.g. for C7 we
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o If P is of the form n = m, then it follows from Ds.

e If P is m < n, then the sentences m =0, ..., = 7 are all
false and by Ds, refutable. Substitute m for w in Ds.
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Another sufficient condition of ¥-completeness

Suppose

Dy Every true atomic Yg-sentence is provable;

Dy If m and n are distinct numbers, then n # m is provable;
D3 For any variable w and number n, the formula

w<ia—=(w=0V...Vw=n)

is provable. Then our system is Yp-complete.
C1 and C) follow from these three conditions. E.g. for C7 we
need only that every P false atomic Yg-sentence is refutable.
o If P is of the form n = m, then it follows from Ds.
e If P is m < n, then the sentences m =0, ..., = 7 are all
false and by Ds, refutable. Substitute m for w in Ds.
o If Pis m + n = k, then for some | # k, m + . = [ is true
and by Dy, provable. By Dy, k # [ is provable, too, and
they imply —P.
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Another sufficient condition of ¥-completeness

Suppose

Dy Every true atomic Yg-sentence is provable;

Dy If m and n are distinct numbers, then n # m is provable;
D3 For any variable w and number n, the formula

w<ia—=(w=0V...Vw=n)

is provable. Then our system is Yp-complete.
C1 and C) follow from these three conditions. E.g. for C7 we
need only that every P false atomic Yg-sentence is refutable.

o If P is of the form n = m, then it follows from Ds.

e If P is m < n, then the sentences m =0, ..., = 7 are all
false and by Ds, refutable. Substitute m for w in Ds.

o If Pis m + n = k, then for some | # k, m + . = [ is true
and by Dy, provable. By Dy, k # [ is provable, too, and
they imply —P.

o Similarly for a P of the form m -7 = k.
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Yo-complete subsystems of P.A.

(Q) P.A. without the induction scheme (i.e., 9 singular
arithmetic axioms).
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Yo-complete subsystems of P.A.

(Q) P.A. without the induction scheme (i.e., 9 singular
arithmetic axioms).

(Qo) Drop the axiom No: v; < vg V vy < v; from (Q).
(R) Non-logical axioms are instances of the following 5 schemes:

m+n =k, where m +n = k.
Qo m -7 =k, where m*n = k.
m # n, where m and n are distinct numbers.
Q4 UlgﬁHvli()\/...\/’Uli’fl
<
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Yo-complete subsystems of P.A.

(Q) P.A. without the induction scheme (i.e., 9 singular
arithmetic axioms).
(Qo) Drop the axiom No: v; < vg V vy < v; from (Q).
(R) Non-logical axioms are instances of the following 5 schemes:

+ 7 =k, where m +n = k.
-7 =k, where m*n = k.
# n, where m and n are distinct numbers.
Q4 UlgﬁHvli()\/...\/’Uli’fl
<

S
333

(Rp) €25 can be dropped again.
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(Q) P.A. without the induction scheme (i.e., 9 singular
arithmetic axioms).
(Qo) Drop the axiom No: v; < vg V vy < v; from (Q).
(R) Non-logical axioms are instances of the following 5 schemes:

+ 7 =k, where m +n = k.
-7 =k, where m*n = k.
# n, where m and n are distinct numbers.
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(Rp) €25 can be dropped again.

(Rp) is Xp-complete because it satisfies the D conditions.
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Yo-complete subsystems of P.A.

(Q) P.A. without the induction scheme (i.e., 9 singular
arithmetic axioms).
(Qo) Drop the axiom No: v; < vg V vy < v; from (Q).
(R) Non-logical axioms are instances of the following 5 schemes:

+ 7 =k, where m +n = k.
-7 =k, where m*n = k.
# n, where m and n are distinct numbers.
Q4 UlgﬁHvli()\/...\/’Uli’fl
<

S
333

(Rp) €25 can be dropped again.

(Rp) is Xp-complete because it satisfies the D conditions.

(Ro) is a subsystem of (Qp) and (R) is a subsystem of (Q). We
need metalanguage induction to prove that the axioms of (R)
are provable in (Q).
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Step B. and Godel’s Theorem

Theorem (B.): The systems (Rp), (R), (Qo), (@) and P.A. are
all ¥p-complete.
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Step B. and Godel’s Theorem

Theorem (B.): The systems (Rp), (R), (Qo), (@) and P.A. are
all ¥p-complete.

Godel’s first incompleteness-theorem: If P.A. is

w-consistent, then it is incomplete.
From A. and B.
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Step B. and Godel’s Theorem

Theorem (B.): The systems (Rp), (R), (Qo), (@) and P.A. are
all ¥p-complete.

Godel’s first incompleteness-theorem: If P.A. is

w-consistent, then it is incomplete.
From A. and B.

There is a Xy formula A(vi,v2) which enumerates P* in P.A.
E, = Yv9—A(v1,v9) is a formula whose negation represents P*.
G = Vve—A(a, ve) is not provable in P.A. if P.A. is consistent
and it is not refutable, either if P.A. is w-consistent.
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