Gödel's First Incompleteness Theorem Original form

András Máté

12.04.2024

Recapitulation: What we want and what we have

Recapitulation: What we want and what we have

Two steps to the first incompleteness theorem:

Recapitulation: What we want and what we have

Two steps to the first incompleteness theorem:
A. If \mathcal{S} is axiomatizable, ω-consistent and every true Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.

Recapitulation: What we want and what we have

Two steps to the first incompleteness theorem:
A. If \mathcal{S} is axiomatizable, ω-consistent and every true Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.
B. All true Σ_{0}-sentences are provable in P.A.

Recapitulation: What we want and what we have

Two steps to the first incompleteness theorem:
A. If \mathcal{S} is axiomatizable, ω-consistent and every true Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.
B. All true Σ_{0}-sentences are provable in P.A.

Theorem: Be $A\left(v_{1}, v_{2}\right)$ a formula that enumerates P^{*} in \mathcal{S}, a the Gödel number of $\forall v_{2} \neg A\left(v_{1}, v_{2}\right)$ and G the sentence $\forall v_{2} \neg A\left(\bar{a}, v_{2}\right)$. Then:
(1) if \mathcal{S} is (simply) consistent, then G is not provable;
(2) if \mathcal{S} is ω-consistent, then G is not refutable, either.

Step A. to Gödel's theorem

Step A. to Gödel's theorem

\mathbf{A}_{1} If \mathcal{S} is axiomatizable, ω-consistent and every Σ_{1} set is enumerable, then \mathcal{S} is incomplete.
\mathbf{A}_{1} If \mathcal{S} is axiomatizable, ω-consistent and every Σ_{1} set is enumerable, then \mathcal{S} is incomplete.

By assumption, \mathcal{S} is axiomatizable, i.e. P is Σ_{1}. We proved that the adjoint set of any Σ_{1} set is Σ_{1}, too. Hence P^{*} is Σ_{1}. By assumption, P^{*} is enumerable and according to the previous propositions, \mathcal{S} is incomplete.
\mathbf{A}_{1} If \mathcal{S} is axiomatizable, ω-consistent and every Σ_{1} set is enumerable, then \mathcal{S} is incomplete.

By assumption, \mathcal{S} is axiomatizable, i.e. P is Σ_{1}. We proved that the adjoint set of any Σ_{1} set is Σ_{1}, too. Hence P^{*} is Σ_{1}. By assumption, P^{*} is enumerable and according to the previous propositions, \mathcal{S} is incomplete.
\mathbf{A}_{2} If every true Σ_{0} sentence is provable in \mathcal{S}, then every Σ_{1} set and relation is enumerable.
\mathbf{A}_{1} If \mathcal{S} is axiomatizable, ω-consistent and every Σ_{1} set is enumerable, then \mathcal{S} is incomplete.

By assumption, \mathcal{S} is axiomatizable, i.e. P is Σ_{1}. We proved that the adjoint set of any Σ_{1} set is Σ_{1}, too. Hence P^{*} is Σ_{1}. By assumption, P^{*} is enumerable and according to the previous propositions, \mathcal{S} is incomplete.
\mathbf{A}_{2} If every true Σ_{0} sentence is provable in \mathcal{S}, then every Σ_{1} set and relation is enumerable.

If $R\left(v_{1}, \ldots, v_{n}\right)$ is a Σ_{1} relation, then there is an $S\left(v_{1}, \ldots, v_{n}, v_{n+1}\right) \Sigma_{0}$ relation s.t.

$$
R\left(v_{1}, \ldots, v_{n}\right) \leftrightarrow \exists y S\left(v_{1}, \ldots, v_{n}, y\right)
$$

Step A_{2} (continuation)

Step A_{2} (continuation)

Be $F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)$ the Σ_{0} formula expressing S. F enumerates R.

Step A_{2} (continuation)

Be $F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)$ the Σ_{0} formula expressing S. F enumerates R.

If $R\left(k_{1}, \ldots, k_{n}\right)$ holds, then for some $k, S\left(k_{1}, \ldots, k_{n}, k\right)$ holds and therefore the Σ_{0} sentence $F\left(\bar{k}_{1}, \ldots \bar{k}_{n}, \bar{k}\right)$ is true. By assumption, it is provable.

Be $F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)$ the Σ_{0} formula expressing S.
F enumerates R.
If $R\left(k_{1}, \ldots, k_{n}\right)$ holds, then for some $k, S\left(k_{1}, \ldots, k_{n}, k\right)$ holds and therefore the Σ_{0} sentence $F\left(\bar{k}_{1}, \ldots \bar{k}_{n}, \bar{k}\right)$ is true. By assumption, it is provable.
If $R\left(k_{1}, \ldots, k_{n}\right)$ does not hold, then for no k holds $S\left(k_{1}, \ldots, k_{n}, k\right)$. Therefore for any k, the sentence $F\left(\bar{k}_{1}, \ldots \bar{k}_{n}, \bar{k}\right)$ is false. Its negation is true and Σ_{0}, therefore provable, and the sentence itself is refutable.

Be $F\left(v_{1}, \ldots, v_{n}, v_{n+1}\right)$ the Σ_{0} formula expressing S.
F enumerates R.
If $R\left(k_{1}, \ldots, k_{n}\right)$ holds, then for some $k, S\left(k_{1}, \ldots, k_{n}, k\right)$ holds and therefore the Σ_{0} sentence $F\left(\bar{k}_{1}, \ldots \bar{k}_{n}, \bar{k}\right)$ is true. By assumption, it is provable.
If $R\left(k_{1}, \ldots, k_{n}\right)$ does not hold, then for no k holds $S\left(k_{1}, \ldots, k_{n}, k\right)$. Therefore for any k, the sentence $F\left(\bar{k}_{1}, \ldots . \bar{k}_{n}, \bar{k}\right)$ is false. Its negation is true and Σ_{0}, therefore provable, and the sentence itself is refutable.

From \mathbf{A}_{1} and \mathbf{A}_{2} it follows
A. If \mathcal{S} is axiomatizable, ω-consistent and every true Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.

A 'self-strengthening' of A.

A 'self-strengthening' of A.

\mathbf{A}^{*} : If \mathcal{S} is axiomatizable, ω-consistent and no false Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.

A 'self-strengthening' of A.

\mathbf{A}^{*} : If \mathcal{S} is axiomatizable, ω-consistent and no false Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.

If every true Σ_{0} sentence is provable, then \mathcal{S} is incomplete by A . If not, then there is a true Σ_{0} sentence A that is not provable, and $\neg A$ is not provable, either, because it is false.

A 'self-strengthening' of A.

\mathbf{A}^{*} : If \mathcal{S} is axiomatizable, ω-consistent and no false Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.

If every true Σ_{0} sentence is provable, then \mathcal{S} is incomplete by A . If not, then there is a true Σ_{0} sentence A that is not provable, and $\neg A$ is not provable, either, because it is false.

Another proof for A*:
Be \mathcal{S} axiomatizable, $R(x, y)$ an arbitrary Σ_{0} relation with the domain $P^{*}, A\left(v_{1}, v_{2}\right)$ the Σ_{0} formula expressing it, a the Gödel number of the formula $\forall v_{2} \neg A\left(v_{1}, v_{2}\right)$ and G the sentence $\forall v_{2} \neg A\left(\bar{a}, v_{2}\right)$.

A 'self-strengthening' of A.

A*: If \mathcal{S} is axiomatizable, ω-consistent and no false Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.

If every true Σ_{0} sentence is provable, then \mathcal{S} is incomplete by A . If not, then there is a true Σ_{0} sentence A that is not provable, and $\neg A$ is not provable, either, because it is false.

Another proof for A*:
Be \mathcal{S} axiomatizable, $R(x, y)$ an arbitrary Σ_{0} relation with the domain $P^{*}, A\left(v_{1}, v_{2}\right)$ the Σ_{0} formula expressing it, a the Gödel number of the formula $\forall v_{2} \neg A\left(v_{1}, v_{2}\right)$ and G the sentence $\forall v_{2} \neg A\left(\bar{a}, v_{2}\right)$.

1. Suppose G is provable. Then $a \in P^{*}$, therefore there is an n s.t. $A(\bar{a}, \bar{n})$ is true (because a is in the domain of R). But G entails the sentence $\neg A(\bar{a}, \bar{n})$ that is a false Σ_{0} sentence.

A^{*}, continuation

A^{*}, continuation

2. Suppose that G is refutable and \mathcal{S} is ω-consistent. Now $\exists y A(\bar{a}, y)$ is provable. By ω-consistency, there is an n s.t. $\neg A(\bar{a}, \bar{n})$ is not provable. \mathcal{S} is consistent, therefore G is not provable, $a \notin P^{*}$ and $A(\bar{a}, \bar{m})$ is false for any m. So $\neg A(\bar{a}, \bar{n})$ is a true but not provable Σ_{0} sentence.

A^{*}, continuation

2. Suppose that G is refutable and \mathcal{S} is ω-consistent. Now $\exists y A(\bar{a}, y)$ is provable. By ω-consistency, there is an n s.t. $\neg A(\bar{a}, \bar{n})$ is not provable. \mathcal{S} is consistent, therefore G is not provable, $a \notin P^{*}$ and $A(\bar{a}, \bar{m})$ is false for any m. So $\neg A(\bar{a}, \bar{n})$ is a true but not provable Σ_{0} sentence.
3. Assume now that \mathcal{S} is complete, consistent and no false Σ_{0} sentence is provable. Then by $1 ., G$ is not provable. By completeness, it is refutable but every true Σ_{0} sentence is provable. Therefore by $2 ., \mathcal{S}$ is ω-inconsistent.

Homeworks

Homeworks

(1) Prove that if all true Σ_{0} sentences are provable in \mathcal{S}, and \mathcal{S} is ω-consistent, then all Σ_{1} sets are representable.
(2) Be $F\left(v_{1}, v_{2}\right)$ a formula that represents the same relation that it expresses. Suppose that for every m and $n, F(\bar{n}, \bar{m})$ is either provable or refutable, and \mathcal{S} is ω-consistent. Prove that $\exists v_{2} F\left(v_{1}, v_{2}\right)$ represents the same set that it expresses.
(3) Prove the following dual of the second Theorem of the previous class:
Suppose $B\left(v_{1}, v_{2}\right)$ a formula that enumerates R^{*} in \mathcal{S}, b the Gödel number of $\exists v_{2} B\left(v_{1}, v_{2}\right)$ and G the sentence $\forall v_{2} \neg B\left(\bar{b}, v_{2}\right)$. Then:
(1) if \mathcal{S} is (simply) consistent, then G is not provable;
(2) if \mathcal{S} is ω-consistent, then G is not refutable, either.

Remember our strategy

Remember our strategy

Aim: to prove that if P.A. is ω-consistent, then it is incomplete. (Gödel's original result.)

Remember our strategy

Aim: to prove that if P.A. is ω-consistent, then it is incomplete. (Gödel's original result.)

Two steps to this aim:

Remember our strategy

Aim: to prove that if P.A. is ω-consistent, then it is incomplete. (Gödel's original result.)

Two steps to this aim:
A. If \mathcal{S} is axiomatizable, ω-consistent and every true Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.

Remember our strategy

Aim: to prove that if P.A. is ω-consistent, then it is incomplete. (Gödel's original result.)

Two steps to this aim:
A. If \mathcal{S} is axiomatizable, ω-consistent and every true Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.
B. All true Σ_{0}-sentences are provable in P.A.

Remember our strategy

Aim: to prove that if P.A. is ω-consistent, then it is incomplete. (Gödel's original result.)

Two steps to this aim:
A. If \mathcal{S} is axiomatizable, ω-consistent and every true Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.
B. All true Σ_{0}-sentences are provable in P.A.

We did prove \mathbf{A} (and even the stronger theorem \mathbf{A}^{*} : If \mathcal{S} is axiomatizable, ω-consistent and no false Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.)

Remember our strategy

Aim: to prove that if P.A. is ω-consistent, then it is incomplete. (Gödel's original result.)

Two steps to this aim:
A. If \mathcal{S} is axiomatizable, ω-consistent and every true Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.
B. All true Σ_{0}-sentences are provable in P.A.

We did prove \mathbf{A} (and even the stronger theorem \mathbf{A}^{*} : If \mathcal{S} is axiomatizable, ω-consistent and no false Σ_{0} sentence is provable in \mathcal{S}, then \mathcal{S} is incomplete.)

Now we should prove B.

A sufficient pair of conditions for Σ_{0}-completeness

A sufficient pair of conditions for Σ_{0}-completeness

\mathcal{S} is Σ_{0}-complete if every true Σ_{0}-sentence is provable. A Σ_{0}-sentence is correctly decidable in \mathcal{S} if it is either true and provable or false and refutable.

A sufficient pair of conditions for Σ_{0}-completeness

\mathcal{S} is Σ_{0}-complete if every true Σ_{0}-sentence is provable. A Σ_{0}-sentence is correctly decidable in \mathcal{S} if it is either true and provable or false and refutable.

Suppose
C_{1} Every atomic Σ_{0}-sentence is correctly decidable;
C_{2} If $F(w)$ is a Σ_{0}-formula with the only free variable w and $F(\overline{0}), \ldots, F(\bar{n})$ are all provable, then $(\forall w \leq n) F(w)$ is provable, too.
Then \mathcal{S} is Σ_{0}-complete.

A sufficient pair of conditions for Σ_{0}-completeness

\mathcal{S} is Σ_{0}-complete if every true Σ_{0}-sentence is provable.
A Σ_{0}-sentence is correctly decidable in \mathcal{S} if it is either true and provable or false and refutable.
Suppose
C_{1} Every atomic Σ_{0}-sentence is correctly decidable;
C_{2} If $F(w)$ is a Σ_{0}-formula with the only free variable w and $F(\overline{0}), \ldots, F(\bar{n})$ are all provable, then $(\forall w \leq n) F(w)$ is provable, too.
Then \mathcal{S} is Σ_{0}-complete.
Prove that every Σ_{0}-sentence is correctly decidable by induction on the degree of the sentence.

Another sufficient condition of Σ_{0}-completeness

Another sufficient condition of Σ_{0}-completeness

Suppose

D_{1} Every true atomic Σ_{0}-sentence is provable;
D_{2} If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;
D_{3} For any variable w and number n, the formula

$$
w \leq \bar{n} \rightarrow(w=\overline{0} \vee \ldots \vee w=\bar{n})
$$

is provable. Then our system is Σ_{0}-complete.

Another sufficient condition of Σ_{0}-completeness

Suppose

D_{1} Every true atomic Σ_{0}-sentence is provable;
D_{2} If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;
D_{3} For any variable w and number n, the formula

$$
w \leq \bar{n} \rightarrow(w=\overline{0} \vee \ldots \vee w=\bar{n})
$$

is provable. Then our system is Σ_{0}-complete.
C_{1} and C_{2} follow from these three conditions. E.g. for C_{1} we need only that every P false atomic Σ_{0}-sentence is refutable.

Another sufficient condition of Σ_{0}-completeness

Suppose

D_{1} Every true atomic Σ_{0}-sentence is provable;
D_{2} If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;
D_{3} For any variable w and number n, the formula

$$
w \leq \bar{n} \rightarrow(w=\overline{0} \vee \ldots \vee w=\bar{n})
$$

is provable. Then our system is Σ_{0}-complete.
C_{1} and C_{2} follow from these three conditions. E.g. for C_{1} we need only that every P false atomic Σ_{0}-sentence is refutable.

- If P is of the form $\bar{n}=\bar{m}$, then it follows from D_{2}.

Another sufficient condition of Σ_{0}-completeness

Suppose

D_{1} Every true atomic Σ_{0}-sentence is provable;
D_{2} If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;
D_{3} For any variable w and number n, the formula

$$
w \leq \bar{n} \rightarrow(w=\overline{0} \vee \ldots \vee w=\bar{n})
$$

is provable. Then our system is Σ_{0}-complete.
C_{1} and C_{2} follow from these three conditions. E.g. for C_{1} we need only that every P false atomic Σ_{0}-sentence is refutable.

- If P is of the form $\bar{n}=\bar{m}$, then it follows from D_{2}.
- If P is $m \leq n$, then the sentences $\bar{m}=\overline{0}, \ldots, \bar{m}=\bar{n}$ are all false and by D_{2}, refutable. Substitute \bar{m} for w in D_{3}.

Another sufficient condition of Σ_{0}-completeness

Suppose

D_{1} Every true atomic Σ_{0}-sentence is provable;
D_{2} If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;
D_{3} For any variable w and number n, the formula

$$
w \leq \bar{n} \rightarrow(w=\overline{0} \vee \ldots \vee w=\bar{n})
$$

is provable. Then our system is Σ_{0}-complete.
C_{1} and C_{2} follow from these three conditions. E.g. for C_{1} we need only that every P false atomic Σ_{0}-sentence is refutable.

- If P is of the form $\bar{n}=\bar{m}$, then it follows from D_{2}.
- If P is $m \leq n$, then the sentences $\bar{m}=\overline{0}, \ldots, \bar{m}=\bar{n}$ are all false and by D_{2}, refutable. Substitute \bar{m} for w in D_{3}.
- If P is $\bar{m}+\bar{n}=\bar{k}$, then for some $l \neq k, \bar{m}+\bar{n}=\bar{l}$ is true and by D_{1}, provable. By $D_{2}, \bar{k} \neq \bar{l}$ is provable, too, and they imply $\neg P$.

Another sufficient condition of Σ_{0}-completeness

Suppose

D_{1} Every true atomic Σ_{0}-sentence is provable;
D_{2} If m and n are distinct numbers, then $\bar{n} \neq \bar{m}$ is provable;
D_{3} For any variable w and number n, the formula

$$
w \leq \bar{n} \rightarrow(w=\overline{0} \vee \ldots \vee w=\bar{n})
$$

is provable. Then our system is Σ_{0}-complete.
C_{1} and C_{2} follow from these three conditions. E.g. for C_{1} we need only that every P false atomic Σ_{0}-sentence is refutable.

- If P is of the form $\bar{n}=\bar{m}$, then it follows from D_{2}.
- If P is $m \leq n$, then the sentences $\bar{m}=\overline{0}, \ldots, \bar{m}=\bar{n}$ are all false and by D_{2}, refutable. Substitute \bar{m} for w in D_{3}.
- If P is $\bar{m}+\bar{n}=\bar{k}$, then for some $l \neq k, \bar{m}+\bar{n}=\bar{l}$ is true and by D_{1}, provable. By $D_{2}, \bar{k} \neq \bar{l}$ is provable, too, and they imply $\neg P$.
- Similarly for a P of the form $\bar{m} \cdot \bar{n}=\bar{k}$.

Σ_{0}-complete subsystems of P.A.

Σ_{0}-complete subsystems of P.A.

(Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).

Σ_{0}-complete subsystems of P.A.

(Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).
$\left(Q_{0}\right)$ Drop the axiom $N_{9}: v_{1} \leq v_{2} \vee v_{2} \leq v_{1}$ from (Q).

Σ_{0}-complete subsystems of P.A.

(Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).
$\left(Q_{0}\right)$ Drop the axiom $N_{9}: v_{1} \leq v_{2} \vee v_{2} \leq v_{1}$ from (Q).
(R) Non-logical axioms are instances of the following 5 schemes:
$\Omega_{1} \bar{m}+\bar{n}=\bar{k}$, where $m+n=k$.
$\Omega_{2} \bar{m} \cdot \bar{n}=\bar{k}$, where $m * n=k$.
$\Omega_{3} \bar{m} \neq \bar{n}$, where m and n are distinct numbers.
$\Omega_{4} v_{1} \leq \bar{n} \leftrightarrow v_{1}=\overline{0} \vee \ldots \vee v_{1}=\bar{n}$
$\Omega_{5} v_{1} \leq \bar{n} \vee \bar{n} \leq v_{1}$

Σ_{0}-complete subsystems of P.A.

(Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).
$\left(Q_{0}\right)$ Drop the axiom $N_{9}: v_{1} \leq v_{2} \vee v_{2} \leq v_{1}$ from (Q).
(R) Non-logical axioms are instances of the following 5 schemes:
$\Omega_{1} \bar{m}+\bar{n}=\bar{k}$, where $m+n=k$.
$\Omega_{2} \bar{m} \cdot \bar{n}=\bar{k}$, where $m * n=k$.
$\Omega_{3} \bar{m} \neq \bar{n}$, where m and n are distinct numbers.
$\Omega_{4} v_{1} \leq \bar{n} \leftrightarrow v_{1}=\overline{0} \vee \ldots \vee v_{1}=\bar{n}$
$\Omega_{5} v_{1} \leq \bar{n} \vee \bar{n} \leq v_{1}$
$\left(R_{0}\right) \Omega_{5}$ can be dropped again.

Σ_{0}-complete subsystems of P.A.

(Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).
$\left(Q_{0}\right)$ Drop the axiom $N_{9}: v_{1} \leq v_{2} \vee v_{2} \leq v_{1}$ from (Q).
(R) Non-logical axioms are instances of the following 5 schemes:
$\Omega_{1} \bar{m}+\bar{n}=\bar{k}$, where $m+n=k$.
$\Omega_{2} \bar{m} \cdot \bar{n}=\bar{k}$, where $m * n=k$.
$\Omega_{3} \bar{m} \neq \bar{n}$, where m and n are distinct numbers.
$\Omega_{4} v_{1} \leq \bar{n} \leftrightarrow v_{1}=\overline{0} \vee \ldots \vee v_{1}=\bar{n}$
$\Omega_{5} v_{1} \leq \bar{n} \vee \bar{n} \leq v_{1}$
$\left(R_{0}\right) \Omega_{5}$ can be dropped again.
$\left(R_{0}\right)$ is Σ_{0}-complete because it satisfies the D conditions.

Σ_{0}-complete subsystems of P.A.

(Q) P.A. without the induction scheme (i.e., 9 singular arithmetic axioms).
$\left(Q_{0}\right)$ Drop the axiom $N_{9}: v_{1} \leq v_{2} \vee v_{2} \leq v_{1}$ from (Q).
(R) Non-logical axioms are instances of the following 5 schemes:
$\Omega_{1} \bar{m}+\bar{n}=\bar{k}$, where $m+n=k$.
$\Omega_{2} \bar{m} \cdot \bar{n}=\bar{k}$, where $m * n=k$.
$\Omega_{3} \bar{m} \neq \bar{n}$, where m and n are distinct numbers.
$\Omega_{4} v_{1} \leq \bar{n} \leftrightarrow v_{1}=\overline{0} \vee \ldots \vee v_{1}=\bar{n}$
$\Omega_{5} v_{1} \leq \bar{n} \vee \bar{n} \leq v_{1}$
$\left(R_{0}\right) \Omega_{5}$ can be dropped again.
$\left(R_{0}\right)$ is Σ_{0}-complete because it satisfies the D conditions.
$\left(R_{0}\right)$ is a subsystem of $\left(Q_{0}\right)$ and (R) is a subsystem of (Q). We need metalanguage induction to prove that the axioms of (R) are provable in (Q).

Step B. and Gödel's Theorem

Step B. and Gödel's Theorem

Theorem (B.): The systems $\left(R_{0}\right),(R),\left(Q_{0}\right),(Q)$ and P.A. are all Σ_{0}-complete.

Theorem (B.): The systems $\left(R_{0}\right),(R),\left(Q_{0}\right),(Q)$ and P.A. are all Σ_{0}-complete.
Gödel's first incompleteness-theorem: If P.A. is ω-consistent, then it is incomplete.
From A. and B.

Theorem (B.): The systems $\left(R_{0}\right),(R),\left(Q_{0}\right),(Q)$ and P.A. are all Σ_{0}-complete.
Gödel's first incompleteness-theorem: If P.A. is ω-consistent, then it is incomplete.
From A. and B.
There is a Σ_{0} formula $A\left(v_{1}, v_{2}\right)$ which enumerates P^{*} in P.A. $E_{a}=\forall v_{2} \neg A\left(v_{1}, v_{2}\right)$ is a formula whose negation represents P^{*}. $G=\forall v_{2} \neg A\left(\bar{a}, v_{2}\right)$ is not provable in P.A. if P.A. is consistent and it is not refutable, either if P.A. is ω-consistent.

