András Máté

05.04.2024

András Máté Gödel 5th April

András Máté Gödel 5th April

Let ${\mathcal S}$ be a system of axioms

- containing our logical axioms;
- having modus ponens and generalization as the only derivation rules;
- containing an arbitrary set of non-logical axioms.

Let ${\mathcal S}$ be a system of axioms

- containing our logical axioms;
- having modus ponens and generalization as the only derivation rules;
- containing an arbitrary set of non-logical axioms.

 \mathcal{S} is (simply) consistent if no sentence is both provable and refutable in \mathcal{S} .

Let ${\mathcal S}$ be a system of axioms

- containing our logical axioms;
- having modus ponens and generalization as the only derivation rules;
- containing an arbitrary set of non-logical axioms.

 \mathcal{S} is (simply) consistent if no sentence is both provable and refutable in \mathcal{S} .

S is $\underline{\omega}$ -inconsistent if for some formula F(w), the sentence $\exists w F(w)$ is provable but the sentences $F(\bar{0}), F(\bar{1}), \ldots F(\bar{n}), \ldots$ are all refutable. $\underline{\omega}$ -consistent in the other case.

Let ${\mathcal S}$ be a system of axioms

- containing our logical axioms;
- having modus ponens and generalization as the only derivation rules;
- containing an arbitrary set of non-logical axioms.

 \mathcal{S} is (simply) consistent if no sentence is both provable and refutable in \mathcal{S} .

S is $\underline{\omega}$ -inconsistent if for some formula F(w), the sentence $\exists w F(w)$ is provable but the sentences $F(\bar{0}), F(\bar{1}), \ldots F(\bar{n}), \ldots$ are all refutable. $\underline{\omega}$ -consistent in the other case.

An ω -inconsistent system cannot be correct. But it can be consistent.

Let ${\mathcal S}$ be a system of axioms

- containing our logical axioms;
- having modus ponens and generalization as the only derivation rules;
- containing an arbitrary set of non-logical axioms.

 \mathcal{S} is (simply) consistent if no sentence is both provable and refutable in \mathcal{S} .

S is $\underline{\omega}$ -inconsistent if for some formula F(w), the sentence $\exists w F(w)$ is provable but the sentences $F(\bar{0}), F(\bar{1}), \ldots F(\bar{n}), \ldots$ are all refutable. $\underline{\omega}$ -consistent in the other case.

An ω -inconsistent system cannot be correct. But it can be consistent.

S is recursively axiomatizable if P is Σ_1 . (Synonyms: (simply) axiomatizable, recursively enumerable, formal, Σ_1 -system.)

Our aim for now

András Máté Gödel 5th April

・ロト ・四ト ・ヨト ・ヨト

E

 S_1 is a subsystem of S if every formula provable in S_1 is provable in S, too.

 S_1 is a subsystem of S if every formula provable in S_1 is provable in S, too.

Aim: to prove that if P.A. is ω -consistent, then it is incomplete. (Gödel's original result.)

 S_1 is a subsystem of S if every formula provable in S_1 is provable in S, too.

Aim: to prove that if P.A. is ω -consistent, then it is incomplete. (Gödel's original result.)

Two steps to this aim:

 S_1 is a subsystem of S if every formula provable in S_1 is provable in S, too.

Aim: to prove that if P.A. is ω -consistent, then it is incomplete. (Gödel's original result.)

Two steps to this aim:

A. If S is axiomatizable, ω -consistent and every true Σ_0 sentence is provable in S, then S is incomplete.

 S_1 is a subsystem of S if every formula provable in S_1 is provable in S, too.

Aim: to prove that if P.A. is ω -consistent, then it is incomplete. (Gödel's original result.)

Two steps to this aim:

- A. If \mathcal{S} is axiomatizable, ω -consistent and every true Σ_0 sentence is provable in \mathcal{S} , then \mathcal{S} is incomplete.
- B. All true Σ_0 -sentences are provable in P.A.

András Máté Gödel 5th April

イロト イヨト イヨト イヨ

E

 $F(v_1) \text{ represents the number set } A \text{ in } S \text{ if } (n \in A \text{ iff } F(\bar{n}) \text{ is provable in } S).$ $F(v_1, v_2, \ldots, v_n) \text{ represents the set of } n\text{-tuples } A \text{ iff } ((k_1, k_2, \ldots, k_n) \in \overline{A} \text{ iff } F(\bar{k}_1, \bar{k}_2, \ldots, \bar{k}_n) \text{ is provable}).$

 $F(v_1)$ represents the number set A in S if $(n \in A$ iff $F(\bar{n})$ is provable in S). $F(v_1, v_2, \ldots, v_n)$ represents the set of n-tuples A if $((k_1, k_2, \ldots, k_n) \in \overline{A}$ iff $F(\bar{k}_1, \bar{k}_2, \ldots, \bar{k}_n)$ is provable).

In P.A., the set represented by $F(v_1)$ is a subset of the set expressed by it (because P.A. is correct).

 $F(v_1)$ represents the number set A in S if $(n \in A$ iff $F(\bar{n})$ is provable in S). $F(v_1, v_2, \ldots, v_n)$ represents the set of n-tuples A if $((k_1, k_2, \ldots, k_n) \in \overline{A}$ iff $F(\bar{k}_1, \bar{k}_2, \ldots, \bar{k}_n)$ is provable).

In P.A., the set represented by $F(v_1)$ is a subset of the set expressed by it (because P.A. is correct).

Let G be a true but not provable sentence of P.A. $G \wedge v_1 = v_1$ expresses the set of all numbers but represents the empty set.

András Máté Gödel 5th Apri

Let S be a system, P and R the set of Gödel numbers of provable resp. refutable sentences. P^* resp. R^* is the set of numbers n s.t. $E_n[\bar{n}]$ is provable resp. refutable.

Let S be a system, P and R the set of Gödel numbers of provable resp. refutable sentences. P^* resp. R^* is the set of numbers n s.t. $E_n[\bar{n}]$ is provable resp. refutable.

For any formula $H(v_1)$ and number $n, H(\bar{n}) \leftrightarrow H[\bar{n}]$ is a first-order logic validity, and therefore provable in S.

Let S be a system, P and R the set of Gödel numbers of provable resp. refutable sentences. P^* resp. R^* is the set of numbers n s.t. $E_n[\bar{n}]$ is provable resp. refutable.

For any formula $H(v_1)$ and number $n, H(\bar{n}) \leftrightarrow H[\bar{n}]$ is a first-order logic validity, and therefore provable in S.

Hence, for any formula $H(v_1)$ with the Gödel number h, $H(\bar{h})$ is provable in $\mathcal{S} \leftrightarrow h \in P^*$ and $H(\bar{h})$ is refutable in $\mathcal{S} \leftrightarrow h \in R^*$

Let S be a system, P and R the set of Gödel numbers of provable resp. refutable sentences. P^* resp. R^* is the set of numbers n s.t. $E_n[\bar{n}]$ is provable resp. refutable.

For any formula $H(v_1)$ and number $n, H(\bar{n}) \leftrightarrow H[\bar{n}]$ is a first-order logic validity, and therefore provable in S.

Hence, for any formula $H(v_1)$ with the Gödel number h, $H(\bar{h})$ is provable in $\mathcal{S} \leftrightarrow h \in P^*$ and $H(\bar{h})$ is refutable in $\mathcal{S} \leftrightarrow h \in R^*$

Theorem: Let S be consistent, $E_h = H(v_1)$ a formula whose negation represents P^* in S. Then $H(\bar{h})$ is undecidable.

Let S be a system, P and R the set of Gödel numbers of provable resp. refutable sentences. P^* resp. R^* is the set of numbers n s.t. $E_n[\bar{n}]$ is provable resp. refutable.

For any formula $H(v_1)$ and number $n, H(\bar{n}) \leftrightarrow H[\bar{n}]$ is a first-order logic validity, and therefore provable in S.

Hence, for any formula $H(v_1)$ with the Gödel number h, $H(\bar{h})$ is provable in $\mathcal{S} \leftrightarrow h \in P^*$ and $H(\bar{h})$ is refutable in $\mathcal{S} \leftrightarrow h \in R^*$

Theorem: Let S be consistent, $E_h = H(v_1)$ a formula whose negation represents P^* in S. Then $H(\bar{h})$ is undecidable.

Since the negation of $H(v_1)$ represents P^* , for any $n, n \in P^*$ iff $H(\bar{n})$ is refutable in \mathcal{S} . Therefore, $H(\bar{h})$ is refutable iff $h \in P^*$ and (according to the previous claim) iff $h \in R^*$. I. e., $H(\bar{h})$ is either both provable and refutable or neither provable nor refutable. By consistency, the second.

A corollary and its dual form

András Máté Gödel 5th April

▲冊▶ ▲理▶ ▲

-

▲冊▶ ▲ 匣▶ ▲

Proof 1: If $F(v_1)$ represents P^* in S, then $\neg \neg F(v_1)$ represents P^* , too. $\neg F(v_1)$ is a formula whose negation represents P^* , so the conditions of the previous theorem are satisfied.

Proof 1: If $F(v_1)$ represents P^* in S, then $\neg \neg F(v_1)$ represents P^* , too. $\neg F(v_1)$ is a formula whose negation represents P^* , so the conditions of the previous theorem are satisfied.

Proof 2: Let $H(v_1)$ represent P^* in S and k the Gödel number of $\neg H(v_1)$. Then $H(\bar{k})$ is undecidable.

Proof 1: If $F(v_1)$ represents P^* in S, then $\neg \neg F(v_1)$ represents P^* , too. $\neg F(v_1)$ is a formula whose negation represents P^* , so the conditions of the previous theorem are satisfied.

Proof 2: Let $H(v_1)$ represent P^* in S and k the Gödel number of $\neg H(v_1)$. Then $H(\bar{k})$ is undecidable.

Dual form: If R^* is representable in the consistent system S, then S is incomplete.

Proof 1: If $F(v_1)$ represents P^* in S, then $\neg \neg F(v_1)$ represents P^* , too. $\neg F(v_1)$ is a formula whose negation represents P^* , so the conditions of the previous theorem are satisfied.

Proof 2: Let $H(v_1)$ represent P^* in S and k the Gödel number of $\neg H(v_1)$. Then $H(\bar{k})$ is undecidable.

Dual form: If R^* is representable in the consistent system \mathcal{S} , then \mathcal{S} is incomplete.

Proof: Let $H(v_1)$ represent R^* and its Gödel number be h. Then $H(\bar{h})$ is provable iff $h \in R^*$

Proof 1: If $F(v_1)$ represents P^* in S, then $\neg \neg F(v_1)$ represents P^* , too. $\neg F(v_1)$ is a formula whose negation represents P^* , so the conditions of the previous theorem are satisfied.

Proof 2: Let $H(v_1)$ represent P^* in S and k the Gödel number of $\neg H(v_1)$. Then $H(\bar{k})$ is undecidable.

Dual form: If R^* is representable in the consistent system \mathcal{S} , then \mathcal{S} is incomplete.

Proof: Let $H(v_1)$ represent R^* and its Gödel number be h. Then $H(\bar{h})$ is provable iff $h \in R^*$ iff $H(\bar{h})$ is refutable.

Homeworks:

András Máté Gödel 5th April

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

E

• Finish Proof 2. Why is $H(\bar{k})$ undecidable?

▲ □ ► < □ ►</p>

• Prove that $\stackrel{\sim}{P^*}$ (the complement set of P^*) is not representable (and this is independent of consistency).

Suppose *P*^{*} is representable in the *S*' consistent extension of *S*. Prove that *S* is incomplete.

Suppose now $H(v_1)$ both represents and expresses R^* . Is in this case $H(\bar{h})$ true or false?

András Máté Gödel 5th April

- 4 回 ト 4 回 ト 4 回

E

Enumerability

The formula $F(v_1, v_2)$ enumerates the set A in the system S if

- if $n \in A$, then there is an m s.t. $F(\bar{n}, \bar{m})$ is provable;
- **(**) if $n \notin A$, then for all $m, F(\bar{n}, \bar{m})$ is refutable.

Enumerability

The formula $F(v_1, v_2)$ <u>enumerates</u> the set A in the system S if

- if $n \in A$, then there is an m s.t. $F(\bar{n}, \bar{m})$ is provable;
- **(**) if $n \notin A$, then for all $m, F(\bar{n}, \bar{m})$ is refutable.

More generally, $F(v_1, \ldots, v_n, v_{n+1})$ enumerates the relation $R(v_1, \ldots, v_n)$ in S if

- if $R(k_1, \ldots, k_n)$ holds, then there is an m s.t. $F(\bar{k_1}, \ldots, \bar{k_n}, \bar{m})$ is provable;
- if $R(k_1, \ldots, k_n)$ does not hold, then for all m, $F(\bar{k_1}, \ldots, \bar{k_n}, \bar{m})$ is refutable.

▲御▶ ▲ 国▶ ▲ 国▶

Enumerability

The formula $F(v_1, v_2)$ <u>enumerates</u> the set A in the system S if

- if $n \in A$, then there is an m s.t. $F(\bar{n}, \bar{m})$ is provable;
- **(**) if $n \notin A$, then for all $m, F(\bar{n}, \bar{m})$ is refutable.

More generally, $F(v_1, \ldots, v_n, v_{n+1})$ <u>enumerates</u> the relation $R(v_1, \ldots, v_n)$ in S if

- if $R(k_1, \ldots, k_n)$ holds, then there is an m s.t. $F(\bar{k_1}, \ldots, \bar{k_n}, \bar{m})$ is provable;
- () if $R(k_1, \ldots, k_n)$ does not hold, then for all m, $F(\bar{k_1}, \ldots, \bar{k_n}, \bar{m})$ is refutable.

A set resp. a relation is <u>enumerable</u> if there is a function which enumerates it.

→ 御 ト ★ 注 ト ★ 注 ト - 注

The ω -consistency lemma

András Máté Gödel 5th April

If $n \in A$, then for some m, $F(\bar{n}, \bar{m})$ is provable, hence $\exists v_2(\bar{n}, v_2)$ is provable, too.

If $n \in A$, then for some m, $F(\bar{n}, \bar{m})$ is provable, hence $\exists v_2(\bar{n}, v_2)$ is provable, too.

Suppose $\exists v_2 F(\bar{n}, v_2)$ is provable. If *n* were not in *A*, then $F(\bar{n}, \bar{0}), F(\bar{n}, \bar{1}), \ldots, F(\bar{n}, \bar{m}), \ldots$ would be all refutable, and S would be ω -inconsistent.

If $n \in A$, then for some m, $F(\bar{n}, \bar{m})$ is provable, hence $\exists v_2(\bar{n}, v_2)$ is provable, too.

Suppose $\exists v_2 F(\bar{n}, v_2)$ is provable. If n were not in A, then $F(\bar{n}, \bar{0}), F(\bar{n}, \bar{1}), \ldots, F(\bar{n}, \bar{m}), \ldots$ would be all refutable, and S would be ω -inconsistent.

Consequence: If S is ω -consistent and either P^* or R^* is enumerable, then S is not complete.

András Máté Gödel 5th April

Theorem: Be $A(v_1, v_2)$ a formula that enumerates P^* in S, a the Gödel number of $\forall v_2 \neg A(v_1, v_2)$ and G the sentence $\forall v_2 \neg A(\bar{a}, v_2)$. Then:

- **(**) if S is (simply) consistent, then G is not provable;
- **2** if S is ω -consistent, then G is not refutable, either.

Theorem: Be $A(v_1, v_2)$ a formula that enumerates P^* in S, a the Gödel number of $\forall v_2 \neg A(v_1, v_2)$ and G the sentence $\forall v_2 \neg A(\bar{a}, v_2)$. Then:

- **(**) if S is (simply) consistent, then G is not provable;
- **2** if S is ω -consistent, then G is not refutable, either.

If S is ω -consistent, then according to the ω -consistency lemma, $\neg \forall v_2 \neg A(v_1, v_2)$ represents P^* . So by the first Theorem of this class, G is undecidable.

Theorem: Be $A(v_1, v_2)$ a formula that enumerates P^* in S, a the Gödel number of $\forall v_2 \neg A(v_1, v_2)$ and G the sentence $\forall v_2 \neg A(\bar{a}, v_2)$. Then:

- **(**) if S is (simply) consistent, then G is not provable;
- **2** if S is ω -consistent, then G is not refutable, either.

If S is ω -consistent, then according to the ω -consistency lemma, $\neg \forall v_2 \neg A(v_1, v_2)$ represents P^* . So by the first Theorem of this class, G is undecidable.

But ω -consistency is needed to the irrefutability of G only. If G is provable, then by a lemma of the previous class, $a \in P^*$. Because $A(v_1, v_2)$ enumerates P^* , there is an m s.t. $A(\bar{a}, \bar{m})$ is provable. Then $\exists v_2 A(\bar{a}, v_2)$, i.e $\neg G$ is provable, too. By consistency, G is not provable.

▲御▶ ▲注▶ ▲注