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Σ0 formulas

Atomic Σ0 formulas are of the form
c1 + c2 = c3, c1 · c2 = c3, c1 = c2, c1 ≤ c2, where c1, c2, c3 are
numerals or variables.

Σ0 formulas (inductive de�nition):

1 Atomic Σ0 formulas are Σ0 formulas.

2 If F and G are Σ0 formulas, then so are ¬F and F → G.

3 If F is a Σ0 formula, vi is a variable and c is either a
numeral or a variable di�erent from vi, then (∀vi ≤ c)F is a
Σ0 formula.

Σ0 formulas contain only bounded quanti�ers. A relation is Σ0

i� it is expressible by a Σ0 formula. Σ0 relations are called
constructive arithmetic relations.

Σ0 sentences are e�ectively decidable.

András Máté Gödel 22th March



Σ0 formulas

Atomic Σ0 formulas are of the form
c1 + c2 = c3, c1 · c2 = c3, c1 = c2, c1 ≤ c2, where c1, c2, c3 are
numerals or variables.

Σ0 formulas (inductive de�nition):

1 Atomic Σ0 formulas are Σ0 formulas.

2 If F and G are Σ0 formulas, then so are ¬F and F → G.

3 If F is a Σ0 formula, vi is a variable and c is either a
numeral or a variable di�erent from vi, then (∀vi ≤ c)F is a
Σ0 formula.

Σ0 formulas contain only bounded quanti�ers. A relation is Σ0

i� it is expressible by a Σ0 formula. Σ0 relations are called
constructive arithmetic relations.

Σ0 sentences are e�ectively decidable.

András Máté Gödel 22th March



Σ0 formulas

Atomic Σ0 formulas are of the form
c1 + c2 = c3, c1 · c2 = c3, c1 = c2, c1 ≤ c2, where c1, c2, c3 are
numerals or variables.

Σ0 formulas (inductive de�nition):

1 Atomic Σ0 formulas are Σ0 formulas.

2 If F and G are Σ0 formulas, then so are ¬F and F → G.

3 If F is a Σ0 formula, vi is a variable and c is either a
numeral or a variable di�erent from vi, then (∀vi ≤ c)F is a
Σ0 formula.

Σ0 formulas contain only bounded quanti�ers. A relation is Σ0

i� it is expressible by a Σ0 formula. Σ0 relations are called
constructive arithmetic relations.

Σ0 sentences are e�ectively decidable.

András Máté Gödel 22th March



Σ0 formulas

Atomic Σ0 formulas are of the form
c1 + c2 = c3, c1 · c2 = c3, c1 = c2, c1 ≤ c2, where c1, c2, c3 are
numerals or variables.

Σ0 formulas (inductive de�nition):

1 Atomic Σ0 formulas are Σ0 formulas.

2 If F and G are Σ0 formulas, then so are ¬F and F → G.

3 If F is a Σ0 formula, vi is a variable and c is either a
numeral or a variable di�erent from vi, then (∀vi ≤ c)F is a
Σ0 formula.

Σ0 formulas contain only bounded quanti�ers. A relation is Σ0

i� it is expressible by a Σ0 formula. Σ0 relations are called
constructive arithmetic relations.

Σ0 sentences are e�ectively decidable.

András Máté Gödel 22th March



Σ0 formulas

Atomic Σ0 formulas are of the form
c1 + c2 = c3, c1 · c2 = c3, c1 = c2, c1 ≤ c2, where c1, c2, c3 are
numerals or variables.

Σ0 formulas (inductive de�nition):

1 Atomic Σ0 formulas are Σ0 formulas.

2 If F and G are Σ0 formulas, then so are ¬F and F → G.

3 If F is a Σ0 formula, vi is a variable and c is either a
numeral or a variable di�erent from vi, then (∀vi ≤ c)F is a
Σ0 formula.

Σ0 formulas contain only bounded quanti�ers. A relation is Σ0

i� it is expressible by a Σ0 formula. Σ0 relations are called
constructive arithmetic relations.

Σ0 sentences are e�ectively decidable.

András Máté Gödel 22th March



Σ0 formulas

Atomic Σ0 formulas are of the form
c1 + c2 = c3, c1 · c2 = c3, c1 = c2, c1 ≤ c2, where c1, c2, c3 are
numerals or variables.

Σ0 formulas (inductive de�nition):

1 Atomic Σ0 formulas are Σ0 formulas.

2 If F and G are Σ0 formulas, then so are ¬F and F → G.

3 If F is a Σ0 formula, vi is a variable and c is either a
numeral or a variable di�erent from vi, then (∀vi ≤ c)F is a
Σ0 formula.

Σ0 formulas contain only bounded quanti�ers. A relation is Σ0

i� it is expressible by a Σ0 formula. Σ0 relations are called
constructive arithmetic relations.

Σ0 sentences are e�ectively decidable.

András Máté Gödel 22th March



Σ0 formulas

Atomic Σ0 formulas are of the form
c1 + c2 = c3, c1 · c2 = c3, c1 = c2, c1 ≤ c2, where c1, c2, c3 are
numerals or variables.

Σ0 formulas (inductive de�nition):

1 Atomic Σ0 formulas are Σ0 formulas.

2 If F and G are Σ0 formulas, then so are ¬F and F → G.

3 If F is a Σ0 formula, vi is a variable and c is either a
numeral or a variable di�erent from vi, then (∀vi ≤ c)F is a
Σ0 formula.

Σ0 formulas contain only bounded quanti�ers. A relation is Σ0

i� it is expressible by a Σ0 formula. Σ0 relations are called
constructive arithmetic relations.

Σ0 sentences are e�ectively decidable.

András Máté Gödel 22th March



Σ0 formulas

Atomic Σ0 formulas are of the form
c1 + c2 = c3, c1 · c2 = c3, c1 = c2, c1 ≤ c2, where c1, c2, c3 are
numerals or variables.

Σ0 formulas (inductive de�nition):

1 Atomic Σ0 formulas are Σ0 formulas.

2 If F and G are Σ0 formulas, then so are ¬F and F → G.

3 If F is a Σ0 formula, vi is a variable and c is either a
numeral or a variable di�erent from vi, then (∀vi ≤ c)F is a
Σ0 formula.

Σ0 formulas contain only bounded quanti�ers. A relation is Σ0

i� it is expressible by a Σ0 formula. Σ0 relations are called
constructive arithmetic relations.

Σ0 sentences are e�ectively decidable.

András Máté Gödel 22th March



Σ1 and Σ formulas

∃vn+1F (v1, v2, . . . , vn, vn+1) is a Σ1 formula i�
F (v1, v2, . . . , vn, vn+1) is Σ0.

Σ formulas (inductive de�nition):

1 Σ0 formulas are Σ formulas.

2 If F is Σ, then ∃viF is Σ, too (for any vi).

3 If F is Σ, then (∃vi ≤ c)F and (∀vi ≤ c)F are Σ-s, too. (c is
either a numeral or a variable di�erent from vi.)

4 If F and G are Σ formulas, then so are F ∨G and F ∧G. If
F is Σ0, then F → G is Σ, too.

The relations expressible by Σ1 resp. Σ formulas are Σ1 resp. Σ
relations. Every Σ relation is Σ0 or Σ1 (later). They are the
recursively enumerable relations.

András Máté Gödel 22th March



Σ1 and Σ formulas

∃vn+1F (v1, v2, . . . , vn, vn+1) is a Σ1 formula i�
F (v1, v2, . . . , vn, vn+1) is Σ0.

Σ formulas (inductive de�nition):

1 Σ0 formulas are Σ formulas.

2 If F is Σ, then ∃viF is Σ, too (for any vi).

3 If F is Σ, then (∃vi ≤ c)F and (∀vi ≤ c)F are Σ-s, too. (c is
either a numeral or a variable di�erent from vi.)

4 If F and G are Σ formulas, then so are F ∨G and F ∧G. If
F is Σ0, then F → G is Σ, too.

The relations expressible by Σ1 resp. Σ formulas are Σ1 resp. Σ
relations. Every Σ relation is Σ0 or Σ1 (later). They are the
recursively enumerable relations.

András Máté Gödel 22th March



Σ1 and Σ formulas

∃vn+1F (v1, v2, . . . , vn, vn+1) is a Σ1 formula i�
F (v1, v2, . . . , vn, vn+1) is Σ0.

Σ formulas (inductive de�nition):

1 Σ0 formulas are Σ formulas.

2 If F is Σ, then ∃viF is Σ, too (for any vi).

3 If F is Σ, then (∃vi ≤ c)F and (∀vi ≤ c)F are Σ-s, too. (c is
either a numeral or a variable di�erent from vi.)

4 If F and G are Σ formulas, then so are F ∨G and F ∧G. If
F is Σ0, then F → G is Σ, too.

The relations expressible by Σ1 resp. Σ formulas are Σ1 resp. Σ
relations. Every Σ relation is Σ0 or Σ1 (later). They are the
recursively enumerable relations.

András Máté Gödel 22th March



Σ1 and Σ formulas

∃vn+1F (v1, v2, . . . , vn, vn+1) is a Σ1 formula i�
F (v1, v2, . . . , vn, vn+1) is Σ0.

Σ formulas (inductive de�nition):

1 Σ0 formulas are Σ formulas.

2 If F is Σ, then ∃viF is Σ, too (for any vi).

3 If F is Σ, then (∃vi ≤ c)F and (∀vi ≤ c)F are Σ-s, too. (c is
either a numeral or a variable di�erent from vi.)

4 If F and G are Σ formulas, then so are F ∨G and F ∧G. If
F is Σ0, then F → G is Σ, too.

The relations expressible by Σ1 resp. Σ formulas are Σ1 resp. Σ
relations. Every Σ relation is Σ0 or Σ1 (later). They are the
recursively enumerable relations.

András Máté Gödel 22th March



Σ1 and Σ formulas

∃vn+1F (v1, v2, . . . , vn, vn+1) is a Σ1 formula i�
F (v1, v2, . . . , vn, vn+1) is Σ0.

Σ formulas (inductive de�nition):

1 Σ0 formulas are Σ formulas.

2 If F is Σ, then ∃viF is Σ, too (for any vi).

3 If F is Σ, then (∃vi ≤ c)F and (∀vi ≤ c)F are Σ-s, too. (c is
either a numeral or a variable di�erent from vi.)

4 If F and G are Σ formulas, then so are F ∨G and F ∧G. If
F is Σ0, then F → G is Σ, too.

The relations expressible by Σ1 resp. Σ formulas are Σ1 resp. Σ
relations. Every Σ relation is Σ0 or Σ1 (later). They are the
recursively enumerable relations.

András Máté Gödel 22th March



Σ1 and Σ formulas

∃vn+1F (v1, v2, . . . , vn, vn+1) is a Σ1 formula i�
F (v1, v2, . . . , vn, vn+1) is Σ0.

Σ formulas (inductive de�nition):

1 Σ0 formulas are Σ formulas.

2 If F is Σ, then ∃viF is Σ, too (for any vi).

3 If F is Σ, then (∃vi ≤ c)F and (∀vi ≤ c)F are Σ-s, too. (c is
either a numeral or a variable di�erent from vi.)

4 If F and G are Σ formulas, then so are F ∨G and F ∧G. If
F is Σ0, then F → G is Σ, too.

The relations expressible by Σ1 resp. Σ formulas are Σ1 resp. Σ
relations. Every Σ relation is Σ0 or Σ1 (later). They are the
recursively enumerable relations.

András Máté Gödel 22th March



Σ1 and Σ formulas

∃vn+1F (v1, v2, . . . , vn, vn+1) is a Σ1 formula i�
F (v1, v2, . . . , vn, vn+1) is Σ0.

Σ formulas (inductive de�nition):

1 Σ0 formulas are Σ formulas.

2 If F is Σ, then ∃viF is Σ, too (for any vi).

3 If F is Σ, then (∃vi ≤ c)F and (∀vi ≤ c)F are Σ-s, too. (c is
either a numeral or a variable di�erent from vi.)

4 If F and G are Σ formulas, then so are F ∨G and F ∧G. If
F is Σ0, then F → G is Σ, too.

The relations expressible by Σ1 resp. Σ formulas are Σ1 resp. Σ
relations. Every Σ relation is Σ0 or Σ1 (later). They are the
recursively enumerable relations.

András Máté Gödel 22th March



Σ1 and Σ formulas

∃vn+1F (v1, v2, . . . , vn, vn+1) is a Σ1 formula i�
F (v1, v2, . . . , vn, vn+1) is Σ0.

Σ formulas (inductive de�nition):

1 Σ0 formulas are Σ formulas.

2 If F is Σ, then ∃viF is Σ, too (for any vi).

3 If F is Σ, then (∃vi ≤ c)F and (∀vi ≤ c)F are Σ-s, too. (c is
either a numeral or a variable di�erent from vi.)

4 If F and G are Σ formulas, then so are F ∨G and F ∧G. If
F is Σ0, then F → G is Σ, too.

The relations expressible by Σ1 resp. Σ formulas are Σ1 resp. Σ
relations. Every Σ relation is Σ0 or Σ1 (later). They are the
recursively enumerable relations.

András Máté Gödel 22th March



Concatenation to a prime base

Goal: to prove that xy = z is arithmetic. In the arithmetization
of the syntactic notions we used Powb(x). If b is a prime, then
Powb(x) holds i� every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ0:

1 x div y ↔ (∃z ≤ y)(x · z = y)

2 Powp(x)↔ (∀z ≤ x)((z div x ∧ z 6= 1)→ p div z)

3 y = plp(x) ↔ (Powp(y) ∧ y > x ∧ y > 1) ∧ (∀z <
y)¬(Powp(z) ∧ z > x ∧ z > 1)

For any p prime number, x ∗p y = z is Σ0.

x ∗p y = z ↔ x · plp(y) + y = z ↔ (∃w1 ≤ z)(∃w2 ≤ z)(w1 =
plp(y) ∧ w2 = x · w1 ∧ w2 + y = z)

András Máté Gödel 22th March



Concatenation to a prime base

Goal: to prove that xy = z is arithmetic. In the arithmetization
of the syntactic notions we used Powb(x). If b is a prime, then
Powb(x) holds i� every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ0:

1 x div y ↔ (∃z ≤ y)(x · z = y)

2 Powp(x)↔ (∀z ≤ x)((z div x ∧ z 6= 1)→ p div z)

3 y = plp(x) ↔ (Powp(y) ∧ y > x ∧ y > 1) ∧ (∀z <
y)¬(Powp(z) ∧ z > x ∧ z > 1)

For any p prime number, x ∗p y = z is Σ0.

x ∗p y = z ↔ x · plp(y) + y = z ↔ (∃w1 ≤ z)(∃w2 ≤ z)(w1 =
plp(y) ∧ w2 = x · w1 ∧ w2 + y = z)

András Máté Gödel 22th March



Concatenation to a prime base

Goal: to prove that xy = z is arithmetic. In the arithmetization
of the syntactic notions we used Powb(x). If b is a prime, then
Powb(x) holds i� every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ0:

1 x div y ↔ (∃z ≤ y)(x · z = y)

2 Powp(x)↔ (∀z ≤ x)((z div x ∧ z 6= 1)→ p div z)

3 y = plp(x) ↔ (Powp(y) ∧ y > x ∧ y > 1) ∧ (∀z <
y)¬(Powp(z) ∧ z > x ∧ z > 1)

For any p prime number, x ∗p y = z is Σ0.

x ∗p y = z ↔ x · plp(y) + y = z ↔ (∃w1 ≤ z)(∃w2 ≤ z)(w1 =
plp(y) ∧ w2 = x · w1 ∧ w2 + y = z)

András Máté Gödel 22th March



Concatenation to a prime base

Goal: to prove that xy = z is arithmetic. In the arithmetization
of the syntactic notions we used Powb(x). If b is a prime, then
Powb(x) holds i� every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ0:

1 x div y ↔ (∃z ≤ y)(x · z = y)

2 Powp(x)↔ (∀z ≤ x)((z div x ∧ z 6= 1)→ p div z)

3 y = plp(x) ↔ (Powp(y) ∧ y > x ∧ y > 1) ∧ (∀z <
y)¬(Powp(z) ∧ z > x ∧ z > 1)

For any p prime number, x ∗p y = z is Σ0.

x ∗p y = z ↔ x · plp(y) + y = z ↔ (∃w1 ≤ z)(∃w2 ≤ z)(w1 =
plp(y) ∧ w2 = x · w1 ∧ w2 + y = z)

András Máté Gödel 22th March



Concatenation to a prime base

Goal: to prove that xy = z is arithmetic. In the arithmetization
of the syntactic notions we used Powb(x). If b is a prime, then
Powb(x) holds i� every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ0:

1 x div y ↔ (∃z ≤ y)(x · z = y)

2 Powp(x)↔ (∀z ≤ x)((z div x ∧ z 6= 1)→ p div z)

3 y = plp(x) ↔ (Powp(y) ∧ y > x ∧ y > 1) ∧ (∀z <
y)¬(Powp(z) ∧ z > x ∧ z > 1)

For any p prime number, x ∗p y = z is Σ0.

x ∗p y = z ↔ x · plp(y) + y = z ↔ (∃w1 ≤ z)(∃w2 ≤ z)(w1 =
plp(y) ∧ w2 = x · w1 ∧ w2 + y = z)

András Máté Gödel 22th March



Concatenation to a prime base

Goal: to prove that xy = z is arithmetic. In the arithmetization
of the syntactic notions we used Powb(x). If b is a prime, then
Powb(x) holds i� every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ0:

1 x div y ↔ (∃z ≤ y)(x · z = y)

2 Powp(x)↔ (∀z ≤ x)((z div x ∧ z 6= 1)→ p div z)

3 y = plp(x) ↔ (Powp(y) ∧ y > x ∧ y > 1) ∧ (∀z <
y)¬(Powp(z) ∧ z > x ∧ z > 1)

For any p prime number, x ∗p y = z is Σ0.

x ∗p y = z ↔ x · plp(y) + y = z ↔ (∃w1 ≤ z)(∃w2 ≤ z)(w1 =
plp(y) ∧ w2 = x · w1 ∧ w2 + y = z)

András Máté Gödel 22th March



Concatenation to a prime base

Goal: to prove that xy = z is arithmetic. In the arithmetization
of the syntactic notions we used Powb(x). If b is a prime, then
Powb(x) holds i� every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ0:

1 x div y ↔ (∃z ≤ y)(x · z = y)

2 Powp(x)↔ (∀z ≤ x)((z div x ∧ z 6= 1)→ p div z)

3 y = plp(x) ↔ (Powp(y) ∧ y > x ∧ y > 1) ∧ (∀z <
y)¬(Powp(z) ∧ z > x ∧ z > 1)

For any p prime number, x ∗p y = z is Σ0.

x ∗p y = z ↔ x · plp(y) + y = z ↔ (∃w1 ≤ z)(∃w2 ≤ z)(w1 =
plp(y) ∧ w2 = x · w1 ∧ w2 + y = z)

András Máté Gödel 22th March



Concatenation to a prime base

Goal: to prove that xy = z is arithmetic. In the arithmetization
of the syntactic notions we used Powb(x). If b is a prime, then
Powb(x) holds i� every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ0:

1 x div y ↔ (∃z ≤ y)(x · z = y)

2 Powp(x)↔ (∀z ≤ x)((z div x ∧ z 6= 1)→ p div z)

3 y = plp(x) ↔ (Powp(y) ∧ y > x ∧ y > 1) ∧ (∀z <
y)¬(Powp(z) ∧ z > x ∧ z > 1)

For any p prime number, x ∗p y = z is Σ0.

x ∗p y = z ↔ x · plp(y) + y = z ↔ (∃w1 ≤ z)(∃w2 ≤ z)(w1 =
plp(y) ∧ w2 = x · w1 ∧ w2 + y = z)

András Máté Gödel 22th March



Concatenation to a prime base (continuation)

The relations xBpy, xEpy, xPpy are Σ0.

Just copy the proof of the analogous statement from the
previous class (with p instead of b and Σ0 instead of Arithmetic).

x1 ∗p x2 ∗p . . . ∗p xn = y and x1 ∗p x2 ∗p . . . ∗p xnPpy are both Σ0

(for n ≥ 2). On the same way.
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Where we are?

We know that prime-based concatenation and the relations
begins with, ends with, is a part of are arithmetic, moreover,
they are Σ0.

From these facts and the proofs of the Arithmeticity of the
syntactic notions it follows that they are all Σ (inclusive PE and
RE).

It follows that P̃E is arithmetic, too (although not Σ).

To prove that the adjoint (A∗) of every arithmetic set (A) is
arithmetic, too, we need to prove that xy = z is arithmetic.
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The Finite Set Lemma

The �nite sets (sequences) of ordered pairs of numbers can be
coded by a constructive (i.e., Σ0) function K.

Finite Set Lemma: There is a Σ0 relation K(x, y, z) s. t.

for any �nite sequence of ordered pairs of natural numbers
((a1, b1), . . . (an, bn)), there is a number z s.t. K(x, y, z) i�
(x, y) is one of the (ai, bi)-s;

for any x, y, z, if K(x, y, z) then x, y ≤ z.

Proof:
(Let us identify natural numbers with their 13-ary expansion.)

Frame is a number of the form 2t2, where 1(t) holds (it means
that t is a string consisting of 1's only).

1(x)↔ (∀y ≤ x)(yPx→ 1Py)
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Proof of the Finite Set Lemma (continuation)

Be
θ = ((a1, b1), . . . (an, bn)) an arbitrary sequence;
f a frame which is longer than the longest frame occurring as a
part of some ai or bi.

The number ffa1fb1ff . . . ffanfbnff is a sequence numbernew
of θ.

x is a maximal frame of y (x mf y) i� x is a frame, xPy and no
frame part of y is longer than x. mf is Σ0:

x mf y ↔ xPy∧(∃z ≤ y)(1(z)∧x = 2z2∧(¬∃w ≤ y)(1(w)∧2zw2Py))

K(x, y, z)↔ (∃w ≤ z)(w mf z ∧ wwxwywwPz ∧ wP̃x ∧ wP̃y)

If z is a sequence numbernew of θ, then (K(x, y, z) holds i�
(x, y) is a member of θ).
Obviously, for any triple of natural numbers (x, y, z), if
K(x, y, z) holds, then x, y ≤ z.
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Exponentiation is arithmetic

E-Theorem: The relation xy = z is arithmetic.

Proof:
xy = z holds i� there is a S set of ordered pairs s.t.

1 (y, z) ∈ S;
2 For every (a, b) ∈ S, (a, b) = (0, 1) or there is a (c, d) ∈ S

s.t. (a, b) = (c+ 1, d · x)

xy = z ↔
∃w(K(x, y, w) ∧ (∀a < w)(∀b < w)(K(a, b, w)→

((a = 0 ∧ b = 1) ∨ (∃c ≤ a)(∃d ≤ b)(a = c+ 1 ∧ b = d · x))))

We have now proven that exponentiation is arithmetic with the
help of the Σ0 relation K encoding �nite sequences of ordered
pairs. But things become simpler if we have a function encoding
the �nite sequences of numbers.
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Beta-functions

β(x, y) is a Beta-function i� for every �nite sequence
(a0, a1, . . . , an) there is a number w s.t.
β(w, 0) = a0, β(w, 1) = a1, . . . , β(w, n) = an.

Theorem: There is a Σ0 Beta-function.

Be β(w, i) the smallest k s.t. K(i, k, w) if there is a such k and
β(w, i) = 0 otherwise.

β(w, x) = y ↔
(K(x, y, w)∧(∀z < y)(¬K(x, z, w)))∨(¬(∃z ≤ w)K(x, z, w)∧y = 0),

therefore β(w, x) = y is Σ0.

Be w a sequence numbernew for (0, a0), (1, a1), . . . (n, an). For
each i ≤ n, K(i, ai, w) holds and there is no other m s.t.
K(i,m,w). Therefore β(w, i) = ai.
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Theorems

E-theorem via Beta-function:

xy = z ↔
∃w(β(w, y) = z ∧ (∀n < y)(β(w, n+ 1) = β(w, n) · x))

Adjoint set lemma: If A is arithmetic resp. Σ, then A∗ is
arithmetic resp. Σ, too.

In the proof of this lemma for Arithmetic sets, we had a 13x = y
relation and an unbounded existential quanti�er as a pre�x.

Tarski's theorem for LA:
The TA set of the G?l numbers of true arithmetic sentences is
not arithmetic.

If it were, then T̃A and T̃ ∗
A were arithmetic, too. Therefore, T̃A

would have a G?l sentence and this sentence were true i� it were
not true.
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First Incompleteness Theorem for P.A.

Theorem P.A. is incomplete.
Because PE and RE are Σ, P ∗

E and R∗
E are Σ, too. P̃ ∗

E is
arithmetic, therefore P̃E has an arithmetic G?l sentence H(h̄)
(where H(v1) is the formula expressing P̃ ∗

E). It is true i� it is
not provable in P.E. By correctness, it is true and not provable
in P.E. � even less in P.A. ¬H(h̄) is false, therefore it is not
provable in P.A. Q.e.d.

Another way to the theorem: With some modi�cations of the
de�nitions and proofs leading to the incompleteness of P.E., we
could prove that P̃ ∗

A is arithmetic.

An excercise for homework (easy but important):
We know that the above sentence H(h̄) is true (let us call it G).
Let us add it to the axioms of P.A. The resulting system P.A
+G is correct. Is it complete?
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An excercise for homework (easy but important):
We know that the above sentence H(h̄) is true (let us call it G).
Let us add it to the axioms of P.A. The resulting system P.A
+G is correct. Is it complete?
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Recursively enumerable and recursive sets and relations

Theorem without demonstration: Every Σ set and relation is
Σ1. Therefore, P

∗
A and R∗

A are Σ1.
Σ1 sets and relations are the recursively enumerable sets resp.
relations. A set or relation is recursive if both the set/relation
itself and its complement is Σ1

.

Intuitively, a set is recursively enumerable if there is an
automata (recursive function, Turing-machine, Markov
algorithm) that produces all and only its members as outputs.
In other words, every member of the set occurs as its output
after a �nitely long time.
Recursive sets are decidable: after a �nite time, each member of
our domain occurs either as the output of the automata
enumerating the set or as the output of the automata
enumerating its complement.
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Some philosophy

We know that P.A. is correct.

We know that P.A. is incomplete because LA contains a
sentence G which is true i� it is not provable and P.A. is correct.

LA contains the sentence ¬P (k) (where k is the G?l number of
the sentence 0 = 0

′
) which is true i� P.A. is consistent. (Let us

call it consis.)

We know that P.A. is consistent because it is correct.

But how do we know all that?

Hilbert's program was: let us prove theorems about
mathematical theories by �nitary means (≈ using only bounded
quanti�ers ). Obvious candidate for a suitable framework: a
�nitary fragment of P.A.
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The Hilbert program and our theorems

The idea is that we should reduce the problem of reliability of
mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument
that was not �nitary.

We know by reliable means only that P.A. is incomplete provided

that it is correct.

We want to prove that � instead of correctness � it is enough to
assume the ω-consistency, and even simple consistency of P.A.
(De�nition of ω-consistency comes next time.)

Second incompleteness theorem: consis is true i� it is not
provable. If it is true, then a fortiori it cannot be provable in
some fragment of P.A.

What would we gain if we could prove consis?

Nothing. It would be something like the Truth-teller.
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