Exponentiation is arithmetic First Incompleteness Theorem and Tarski's Theorem for P.A.

András Máté

22.03.2024

András Máté Gödel 22th March

András Máté Gödel 22th March

<ロト < 聞 > < 臣 > < 臣 >

E

Atomic Σ_0 formulas are of the form $c_1 + c_2 = c_3, c_1 \cdot c_2 = c_3, c_1 = c_2, c_1 \leq c_2$, where c_1, c_2, c_3 are numerals or variables.

伺 と く ヨ と く

<u>Atomic Σ_0 formulas</u> are of the form $c_1 + c_2 = c_3, c_1 \cdot c_2 = c_3, c_1 = c_2, c_1 \leq c_2$, where c_1, c_2, c_3 are numerals or variables.

 Σ_0 formulas (inductive definition):

<u>Atomic Σ_0 formulas</u> are of the form $c_1 + c_2 = c_3, c_1 \cdot c_2 = c_3, c_1 = c_2, c_1 \leq c_2$, where c_1, c_2, c_3 are numerals or variables.

 Σ_0 formulas (inductive definition):

• Atomic Σ_0 formulas are Σ_0 formulas.

Atomic Σ_0 formulas are of the form $c_1 + c_2 = c_3, c_1 \cdot c_2 = c_3, c_1 = c_2, c_1 \leq c_2$, where c_1, c_2, c_3 are numerals or variables.

 Σ_0 formulas (inductive definition):

- Atomic Σ_0 formulas are Σ_0 formulas.
- **2** If F and G are Σ_0 formulas, then so are $\neg F$ and $F \to G$.

Atomic Σ_0 formulas are of the form $c_1 + c_2 = c_3, c_1 \cdot c_2 = c_3, c_1 = c_2, c_1 \leq c_2$, where c_1, c_2, c_3 are numerals or variables.

 Σ_0 formulas (inductive definition):

- Atomic Σ_0 formulas are Σ_0 formulas.
- **2** If F and G are Σ_0 formulas, then so are $\neg F$ and $F \to G$.
- If F is a ∑₀ formula, v_i is a variable and c is either a numeral or a variable different from v_i, then (∀v_i ≤ c)F is a ∑₀ formula.

Atomic Σ_0 formulas are of the form $c_1 + c_2 = c_3, c_1 \cdot c_2 = c_3, c_1 = c_2, c_1 \leq c_2$, where c_1, c_2, c_3 are numerals or variables.

 Σ_0 formulas (inductive definition):

- Atomic Σ_0 formulas are Σ_0 formulas.
- **2** If F and G are Σ_0 formulas, then so are $\neg F$ and $F \to G$.
- If F is a Σ_0 formula, v_i is a variable and c is either a numeral or a variable different from v_i , then $(\forall v_i \leq c)F$ is a Σ_0 formula.

 Σ_0 formulas contain only bounded quantifiers. A relation is Σ_0 iff it is expressible by a Σ_0 formula. Σ_0 relations are called constructive arithmetic relations.

Atomic Σ_0 formulas are of the form $c_1 + c_2 = c_3, c_1 \cdot c_2 = c_3, c_1 = c_2, c_1 \leq c_2$, where c_1, c_2, c_3 are numerals or variables.

 Σ_0 formulas (inductive definition):

- Atomic Σ_0 formulas are Σ_0 formulas.
- **2** If F and G are Σ_0 formulas, then so are $\neg F$ and $F \to G$.
- ◎ If F is a Σ_0 formula, v_i is a variable and c is either a numeral or a variable different from v_i , then $(\forall v_i \leq c)F$ is a Σ_0 formula.

 Σ_0 formulas contain only bounded quantifiers. A relation is Σ_0 iff it is expressible by a Σ_0 formula. Σ_0 relations are called constructive arithmetic relations.

 Σ_0 sentences are effectively decidable.

András Máté Gödel 22th March

・ロト ・聞ト ・ヨト ・ヨト

1

 $\exists v_{n+1} F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is a } \underline{\Sigma_1 \text{ formula iff}} F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is } \Sigma_0.$

▲御▶ ▲唐▶ ▲唐▶

E

 $\exists v_{n+1} F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is a } \underline{\Sigma_1 \text{ formula iff}} \\ F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is } \Sigma_0.$

 Σ formulas (inductive definition):

★掃♪ ★注♪ ★注♪

$$\exists v_{n+1} F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is a } \underline{\Sigma_1 \text{ formula }} \text{ iff } F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is } \Sigma_0.$$

 Σ formulas (inductive definition):

() Σ_0 formulas are Σ formulas.

$$\exists v_{n+1} F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is a } \underline{\Sigma_1 \text{ formula }} \text{ iff } F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is } \Sigma_0.$$

 Σ formulas (inductive definition):

- **(**) Σ_0 formulas are Σ formulas.
- **2** If F is Σ , then $\exists v_i F$ is Σ , too (for any v_i).

$$\exists v_{n+1} F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is a } \underline{\Sigma_1 \text{ formula}}$$
iff
$$F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is } \Sigma_0.$$

 Σ formulas (inductive definition):

- **()** Σ_0 formulas are Σ formulas.
- **2** If F is Σ , then $\exists v_i F$ is Σ , too (for any v_i).
- ◎ If F is Σ , then $(\exists v_i \leq c)F$ and $(\forall v_i \leq c)F$ are Σ -s, too. (c is either a numeral or a variable different from v_i .)

$$\exists v_{n+1} F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is a } \underline{\Sigma_1 \text{ formula}}$$
iff
$$F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is } \Sigma_0.$$

 Σ formulas (inductive definition):

- **1** Σ_0 formulas are Σ formulas.
- **2** If F is Σ , then $\exists v_i F$ is Σ , too (for any v_i).
- ◎ If F is Σ , then $(\exists v_i \leq c)F$ and $(\forall v_i \leq c)F$ are Σ -s, too. (c is either a numeral or a variable different from v_i .)
- If F and G are Σ formulas, then so are F ∨ G and F ∧ G. If F is Σ₀, then F → G is Σ, too.

$$\exists v_{n+1} F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is a } \underline{\Sigma_1 \text{ formula }} \text{ iff } F(v_1, v_2, \dots, v_n, v_{n+1}) \text{ is } \Sigma_0.$$

 Σ formulas (inductive definition):

- **()** Σ_0 formulas are Σ formulas.
- **2** If F is Σ , then $\exists v_i F$ is Σ , too (for any v_i).
- ◎ If F is Σ , then $(\exists v_i \leq c)F$ and $(\forall v_i \leq c)F$ are Σ -s, too. (c is either a numeral or a variable different from v_i .)
- If F and G are Σ formulas, then so are F ∨ G and F ∧ G. If F is Σ₀, then F → G is Σ, too.

The relations expressible by Σ_1 resp. Σ formulas are Σ_1 resp. Σ relations. Every Σ relation is Σ_0 or Σ_1 (later). They are the recursively enumerable relations.

伺下 イヨト イヨ

Concatenation to a prime base

András Máté Gödel 22th March

If p is a prime, then the following relations are Σ_0 :

Concatenation to a prime base

Goal: to prove that $x^y = z$ is arithmetic. In the arithmetization of the syntactic notions we used $Pow_b(x)$. If b is a prime, then $Pow_b(x)$ holds iff every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ_0 :

 $x \operatorname{div} y \leftrightarrow (\exists z \le y)(x \cdot z = y)$

Concatenation to a prime base

Goal: to prove that $x^y = z$ is arithmetic. In the arithmetization of the syntactic notions we used $Pow_b(x)$. If b is a prime, then $Pow_b(x)$ holds iff every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ_0 :

- $x \operatorname{div} y \leftrightarrow (\exists z \le y)(x \cdot z = y)$
- $Pow_p(x) \leftrightarrow (\forall z \le x)((z \operatorname{div} x \land z \ne 1) \to p \operatorname{div} z)$

If p is a prime, then the following relations are Σ_0 :

$$x \operatorname{div} y \leftrightarrow (\exists z \le y)(x \cdot z = y)$$

$$Pow_p(x) \leftrightarrow (\forall z \le x)((z \operatorname{div} x \land z \ne 1) \to p \operatorname{div} z)$$

$$y = p^{l_p(x)} \leftrightarrow (Pow_p(y) \land y > x \land y > 1) \land (\forall z < y) \neg (Pow_p(z) \land z > x \land z > 1)$$

If p is a prime, then the following relations are Σ_0 :

$$\begin{array}{l} \bullet \quad x \text{ div } y \leftrightarrow (\exists z \leq y)(x \cdot z = y) \\ \bullet \quad Pow_p(x) \leftrightarrow (\forall z \leq x)((z \text{ div } x \wedge z \neq 1) \rightarrow p \text{ div } z) \\ \bullet \quad y = p^{l_p(x)} \leftrightarrow (Pow_p(y) \wedge y > x \wedge y > 1) \wedge (\forall z < y) \neg (Pow_p(z) \wedge z > x \wedge z > 1) \end{array}$$

For any p prime number, $x *_p y = z$ is Σ_0 .

If p is a prime, then the following relations are Σ_0 :

For any p prime number, $x *_p y = z$ is Σ_0 .

$$\begin{aligned} x*_p y &= z \leftrightarrow x \cdot p^{l_p(y)} + y = z \leftrightarrow (\exists w_1 \le z) (\exists w_2 \le z) (w_1 = p^{l_p(y)} \land w_2 = x \cdot w_1 \land w_2 + y = z) \end{aligned}$$

Concatenation to a prime base (continuation)

András Máté Gödel 22th March

.

Concatenation to a prime base (continuation)

The relations xB_py , xE_py , xP_py are Σ_0 .

★課 ▶ ★ 語 ▶ ★ 語 ▶

The relations xB_py , xE_py , xP_py are Σ_0 .

Just copy the proof of the analogous statement from the previous class (with p instead of b and Σ_0 instead of Arithmetic).

The relations xB_py , xE_py , xP_py are Σ_0 .

Just copy the proof of the analogous statement from the previous class (with p instead of b and Σ_0 instead of Arithmetic).

 $x_1 *_p x_2 *_p \dots *_p x_n = y$ and $x_1 *_p x_2 *_p \dots *_p x_n P_p y$ are both Σ_0 (for $n \ge 2$). On the same way.

Where we are?

András Máté 🛛 Gödel 22th March

・ロト ・聞ト ・ヨト ・ヨト

E

From these facts and the proofs of the Arithmeticity of the syntactic notions it follows that they are all Σ (inclusive P_E and R_E).

From these facts and the proofs of the Arithmeticity of the syntactic notions it follows that they are all Σ (inclusive P_E and R_E).

It follows that $\tilde{P_E}$ is arithmetic, too (although not Σ).

From these facts and the proofs of the Arithmeticity of the syntactic notions it follows that they are all Σ (inclusive P_E and R_E).

It follows that \tilde{P}_E is arithmetic, too (although not Σ).

To prove that the adjoint (A^*) of every arithmetic set (A) is arithmetic, too, we need to prove that $x^y = z$ is arithmetic.

The Finite Set Lemma

András Máté Gödel 22th March

(4) (日本)

The Finite Set Lemma

The finite sets (sequences) of ordered pairs of numbers can be coded by a constructive (i.e., Σ_0) function K.

The finite sets (sequences) of ordered pairs of numbers can be coded by a constructive (i.e., Σ_0) function K.

Finite Set Lemma: There is a Σ_0 relation K(x, y, z) s. t.

- for any finite sequence of ordered pairs of natural numbers $((a_1, b_1), \ldots, (a_n, b_n))$, there is a number z s.t. K(x, y, z) iff (x, y) is one of the (a_i, b_i) -s;
- for any x, y, z, if K(x, y, z) then $x, y \leq z$.

伺下 イヨト イヨト

The finite sets (sequences) of ordered pairs of numbers can be coded by a constructive (i.e., Σ_0) function K.

Finite Set Lemma: There is a Σ_0 relation K(x, y, z) s. t.

- for any finite sequence of ordered pairs of natural numbers $((a_1, b_1), \ldots, (a_n, b_n))$, there is a number z s.t. K(x, y, z) iff (x, y) is one of the (a_i, b_i) -s;
- for any x, y, z, if K(x, y, z) then $x, y \leq z$.

Proof:

(Let us identify natural numbers with their 13-ary expansion.)

・ 同 ト ・ ヨ ト ・ ヨ ト

The finite sets (sequences) of ordered pairs of numbers can be coded by a constructive (i.e., Σ_0) function K.

Finite Set Lemma: There is a Σ_0 relation K(x, y, z) s. t.

- for any finite sequence of ordered pairs of natural numbers $((a_1, b_1), \ldots, (a_n, b_n))$, there is a number z s.t. K(x, y, z) iff (x, y) is one of the (a_i, b_i) -s;
- for any x, y, z, if K(x, y, z) then $x, y \leq z$.

Proof:

(Let us identify natural numbers with their 13-ary expansion.)

<u>Frame</u> is a number of the form 2t2, where 1(t) holds (it means that t is a string consisting of 1's only).

(日本) (日本) (日本)

The finite sets (sequences) of ordered pairs of numbers can be coded by a constructive (i.e., Σ_0) function K.

Finite Set Lemma: There is a Σ_0 relation K(x, y, z) s. t.

- for any finite sequence of ordered pairs of natural numbers $((a_1, b_1), \ldots, (a_n, b_n))$, there is a number z s.t. K(x, y, z) iff (x, y) is one of the (a_i, b_i) -s;
- for any x, y, z, if K(x, y, z) then $x, y \leq z$.

Proof:

(Let us identify natural numbers with their 13-ary expansion.)

<u>Frame</u> is a number of the form 2t2, where 1(t) holds (it means that t is a string consisting of 1's only).

$$1(x) \leftrightarrow (\forall y \le x)(yPx \to 1Py)$$

(日本) (日本) (日本)

András Máté Gödel 22th March

• • = • • =

 Be

 $\theta = ((a_1, b_1), \dots (a_n, b_n))$ an arbitrary sequence;

f a frame which is longer than the longest frame occurring as a part of some a_i or b_i .

Be

 $\theta = ((a_1, b_1), \dots (a_n, b_n))$ an arbitrary sequence;

f a frame which is longer than the longest frame occurring as a part of some a_i or b_i .

The number $ffa_1fb_1ff\ldots ffa_nfb_nff$ is a sequence number new of θ .

Be

 $\theta = ((a_1, b_1), \dots (a_n, b_n))$ an arbitrary sequence;

f a frame which is longer than the longest frame occurring as a part of some a_i or b_i .

The number $ffa_1fb_1ff\ldots ffa_nfb_nff$ is a sequence number new of θ .

x is a maximal frame of y (x mf y) iff x is a frame, xPy and no frame part of y is longer than x. mf is Σ_0 :

 $x \text{ mf } y \leftrightarrow x Py \land (\exists z \leq y)(1(z) \land x = 2z2 \land (\neg \exists w \leq y)(1(w) \land 2zw2Py))$

Be

 $\theta = ((a_1, b_1), \dots (a_n, b_n))$ an arbitrary sequence;

f a frame which is longer than the longest frame occurring as a part of some a_i or b_i .

The number $ffa_1fb_1ff\ldots ffa_nfb_nff$ is a sequence number new of θ .

x is a maximal frame of y (x mf y) iff x is a frame, xPy and no frame part of y is longer than x. mf is Σ_0 :

 $x \text{ mf } y \leftrightarrow x Py \land (\exists z \leq y)(1(z) \land x = 2z2 \land (\neg \exists w \leq y)(1(w) \land 2zw2Py))$

 $K(x, y, z) \leftrightarrow (\exists w \le z) (w \text{ mf } z \land wwxwywwPz \land w\tilde{P}x \land w\tilde{P}y)$

伺下 イヨト イヨト

Be

 $\theta = ((a_1, b_1), \dots (a_n, b_n))$ an arbitrary sequence;

f a frame which is longer than the longest frame occurring as a part of some a_i or b_i .

The number $ffa_1fb_1ff\ldots ffa_nfb_nff$ is a sequence number new of θ .

x is a maximal frame of y (x mf y) iff x is a frame, xPy and no frame part of y is longer than x. mf is Σ_0 :

 $x \text{ mf } y \leftrightarrow xPy \land (\exists z \leq y)(1(z) \land x = 2z2 \land (\neg \exists w \leq y)(1(w) \land 2zw2Py))$

 $K(x, y, z) \leftrightarrow (\exists w \leq z)(w \text{ mf } z \land wwxwywwPz \land w\tilde{P}x \land w\tilde{P}y)$ If z is a sequence number_{new} of θ , then (K(x, y, z) holds iff(x, y) is a member of θ). Obviously, for any triple of natural numbers (x, y, z), if K(x, y, z) holds, then $x, y \leq z$.

András Máté Gödel 22th March

E-Theorem: The relation $x^y = z$ is arithmetic.

E-Theorem: The relation $x^y = z$ is arithmetic.

Proof:

 $x^y = z$ holds iff there is a S set of ordered pairs s.t.

- $(y,z) \in S;$

E-Theorem: The relation $x^y = z$ is arithmetic.

Proof:

 $x^y = z$ holds iff there is a S set of ordered pairs s.t.

(y, z) ∈ S;
For every (a, b) ∈ S, (a, b) = (0, 1) or there is a (c, d) ∈ S s.t. (a, b) = (c + 1, d ⋅ x)

$$\begin{split} x^y &= z \leftrightarrow \\ \exists w(K(x,y,w) \land (\forall a < w)(\forall b < w)(K(a,b,w) \rightarrow \\ ((a = 0 \land b = 1) \lor (\exists c \leq a)(\exists d \leq b)(a = c + 1 \land b = d \cdot x)))) \end{split}$$

E-Theorem: The relation $x^y = z$ is arithmetic.

Proof:

 $x^y = z$ holds iff there is a S set of ordered pairs s.t.

(y, z) ∈ S;
For every (a, b) ∈ S, (a, b) = (0, 1) or there is a (c, d) ∈ S s.t. (a, b) = (c + 1, d ⋅ x)

$$\begin{split} x^y &= z \leftrightarrow \\ \exists w (K(x,y,w) \land (\forall a < w) (\forall b < w) (K(a,b,w) \rightarrow \\ ((a = 0 \land b = 1) \lor (\exists c \le a) (\exists d \le b) (a = c + 1 \land b = d \cdot x)))) \end{split}$$

We have now proven that exponentiation is arithmetic with the help of the Σ_0 relation K encoding finite sequences of ordered pairs. But things become simpler if we have a function encoding the finite sequences of numbers.

András Máté Gödel 22th March

(人間) トイヨト イヨト

E

 $\beta(x, y)$ is a <u>Beta-function</u> iff for every finite sequence (a_0, a_1, \ldots, a_n) there is a number w s.t. $\beta(w, 0) = a_0, \beta(w, 1) = a_1, \ldots, \beta(w, n) = a_n.$

伺 と く ヨ と く

 $\beta(x, y)$ is a <u>Beta-function</u> iff for every finite sequence (a_0, a_1, \ldots, a_n) there is a number w s.t. $\beta(w, 0) = a_0, \beta(w, 1) = a_1, \ldots, \beta(w, n) = a_n.$

Theorem: There is a Σ_0 Beta-function.

 $\beta(x, y)$ is a <u>Beta-function</u> iff for every finite sequence (a_0, a_1, \ldots, a_n) there is a number w s.t. $\beta(w, 0) = a_0, \beta(w, 1) = a_1, \ldots, \beta(w, n) = a_n.$

Theorem: There is a Σ_0 Beta-function.

Be $\beta(w, i)$ the smallest k s.t. K(i, k, w) if there is a such k and $\beta(w, i) = 0$ otherwise.

 $\beta(x, y)$ is a <u>Beta-function</u> iff for every finite sequence (a_0, a_1, \ldots, a_n) there is a number w s.t. $\beta(w, 0) = a_0, \beta(w, 1) = a_1, \ldots, \beta(w, n) = a_n.$

Theorem: There is a Σ_0 Beta-function.

Be $\beta(w, i)$ the smallest k s.t. K(i, k, w) if there is a such k and $\beta(w, i) = 0$ otherwise.

$$\beta(w, x) = y \leftrightarrow (K(x, y, w) \land (\forall z < y)(\neg K(x, z, w))) \lor (\neg (\exists z \le w) K(x, z, w) \land y = 0),$$

therefore $\beta(w, x) = y$ is Σ_0 .

 $\beta(x, y)$ is a <u>Beta-function</u> iff for every finite sequence (a_0, a_1, \ldots, a_n) there is a number w s.t. $\beta(w, 0) = a_0, \beta(w, 1) = a_1, \ldots, \beta(w, n) = a_n.$

Theorem: There is a Σ_0 Beta-function.

Be $\beta(w, i)$ the smallest k s.t. K(i, k, w) if there is a such k and $\beta(w, i) = 0$ otherwise.

$$\begin{split} \beta(w,x) &= y \leftrightarrow \\ (K(x,y,w) \land (\forall z < y)(\neg K(x,z,w))) \lor (\neg (\exists z \le w) K(x,z,w) \land y = 0), \end{split}$$

therefore $\beta(w, x) = y$ is Σ_0 .

Be w a sequence number_{new} for $(0, a_0), (1, a_1), \ldots, (n, a_n)$. For each $i \leq n, K(i, a_i, w)$ holds and there is no other m s.t. K(i, m, w). Therefore $\beta(w, i) = a_i$.

伺下 イヨト イヨト

Theorems

András Máté Gödel 22th March

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Э

E-theorem via Beta-function:

$$\begin{aligned} x^y &= z \leftrightarrow \\ \exists w (\beta(w,y) &= z \land (\forall n < y) (\beta(w,n+1) = \beta(w,n) \cdot x)) \end{aligned}$$

E

Image: A image: A

$$\begin{aligned} x^y &= z \leftrightarrow \\ \exists w (\beta(w,y) = z \land (\forall n < y) (\beta(w,n+1) = \beta(w,n) \cdot x)) \end{aligned}$$

Adjoint set lemma: If A is arithmetic resp. Σ , then A^* is arithmetic resp. Σ , too.

$$\begin{aligned} x^y &= z \leftrightarrow \\ \exists w (\beta(w,y) = z \land (\forall n < y) (\beta(w,n+1) = \beta(w,n) \cdot x)) \end{aligned}$$

Adjoint set lemma: If A is arithmetic resp. Σ , then A^* is arithmetic resp. Σ , too.

In the proof of this lemma for Arithmetic sets, we had a $13^x = y$ relation and an unbounded existential quantifier as a prefix.

$$\begin{aligned} x^y &= z \leftrightarrow \\ \exists w (\beta(w,y) = z \land (\forall n < y) (\beta(w,n+1) = \beta(w,n) \cdot x)) \end{aligned}$$

Adjoint set lemma: If A is arithmetic resp. Σ , then A^* is arithmetic resp. Σ , too.

In the proof of this lemma for Arithmetic sets, we had a $13^x = y$ relation and an unbounded existential quantifier as a prefix.

Tarski's theorem for \mathcal{L}_A :

The T_A set of the G?l numbers of true arithmetic sentences is not arithmetic.

$$\begin{aligned} x^y &= z \leftrightarrow \\ \exists w(\beta(w,y) &= z \land (\forall n < y)(\beta(w,n+1) = \beta(w,n) \cdot x)) \end{aligned}$$

Adjoint set lemma: If A is arithmetic resp. Σ , then A^* is arithmetic resp. Σ , too.

In the proof of this lemma for Arithmetic sets, we had a $13^x = y$ relation and an unbounded existential quantifier as a prefix.

Tarski's theorem for \mathcal{L}_A :

The T_A set of the G?l numbers of true arithmetic sentences is not arithmetic.

If it were, then \tilde{T}_A and \tilde{T}_A^* were arithmetic, too. Therefore, \tilde{T}_A would have a G?l sentence and this sentence were true iff it were not true.

First Incompleteness Theorem for P.A.

András Máté Gödel 22th March

御 と く き と く

First Incompleteness Theorem for P.A.

Theorem P.A. is incomplete.

Because P_E and R_E are Σ , P_E^* and R_E^* are Σ , too. \tilde{P}_E^* is arithmetic, therefore \tilde{P}_E has an *arithmetic* G?l sentence $H(\bar{h})$ (where $H(v_1)$ is the formula expressing \tilde{P}_E^*). It is true iff it is not provable in P.E. By correctness, it is true and not provable in P.E. – even less in P.A. $\neg H(\bar{h})$ is false, therefore it is not provable in P.A. Q.e.d.

First Incompleteness Theorem for P.A.

Theorem P.A. is incomplete.

Because P_E and R_E are Σ , P_E^* and R_E^* are Σ , too. \tilde{P}_E^* is arithmetic, therefore \tilde{P}_E has an *arithmetic* G?l sentence $H(\bar{h})$ (where $H(v_1)$ is the formula expressing \tilde{P}_E^*). It is true iff it is not provable in P.E. By correctness, it is true and not provable in P.E. – even less in P.A. $\neg H(\bar{h})$ is false, therefore it is not provable in P.A. Q.e.d.

Another way to the theorem: With some modifications of the definitions and proofs leading to the incompleteness of P.E., we could prove that \tilde{P}_A^* is arithmetic.

Theorem P.A. is incomplete.

Because P_E and R_E are Σ , P_E^* and R_E^* are Σ , too. \tilde{P}_E^* is arithmetic, therefore \tilde{P}_E has an *arithmetic* G?l sentence $H(\bar{h})$ (where $H(v_1)$ is the formula expressing \tilde{P}_E^*). It is true iff it is not provable in P.E. By correctness, it is true and not provable in P.E. – even less in P.A. $\neg H(\bar{h})$ is false, therefore it is not provable in P.A. Q.e.d.

Another way to the theorem: With some modifications of the definitions and proofs leading to the incompleteness of P.E., we could prove that \tilde{P}_A^* is arithmetic.

An excercise for homework (easy but important):

We know that the above sentence H(h) is true (let us call it G). Let us add it to the axioms of P.A. The resulting system P.A +G is correct. Is it complete?

▲御▶ ▲臣▶ ▲臣▶

Recursively enumerable and recursive sets and relations

András Máté Gödel 22th March

Recursively enumerable and recursive sets and relations

Theorem without demonstration: Every Σ set and relation is Σ_1 . Therefore, P_A^* and R_A^* are Σ_1 .

□ ▶ ▲ 臣 ▶ ▲ 臣

Recursively enumerable and recursive sets and relations

Theorem without demonstration: Every Σ set and relation is Σ_1 . Therefore, P_A^* and R_A^* are Σ_1 .

 Σ_1 sets and relations are the recursively enumerable sets resp. relations. A set or relation is <u>recursive</u> if both the set/relation itself and its complement is Σ_1 .

Theorem without demonstration: Every Σ set and relation is Σ_1 . Therefore, P_A^* and R_A^* are Σ_1 .

 Σ_1 sets and relations are the recursively enumerable sets resp. relations. A set or relation is <u>recursive</u> if both the set/relation itself and its complement is Σ_1 .

Intuitively, a set is recursively enumerable if there is an automata (recursive function, Turing-machine, Markov algorithm) that produces all and only its members as outputs. In other words, every member of the set occurs as its output after a finitely long time. **Theorem** without demonstration: Every Σ set and relation is Σ_1 . Therefore, P_A^* and R_A^* are Σ_1 .

 Σ_1 sets and relations are the recursively enumerable sets resp. relations. A set or relation is <u>recursive</u> if both the set/relation itself and its complement is Σ_1 .

Intuitively, a set is recursively enumerable if there is an automata (recursive function, Turing-machine, Markov algorithm) that produces all and only its members as outputs. In other words, every member of the set occurs as its output after a finitely long time.

Recursive sets are *decidable*: after a finite time, each member of our domain occurs either as the output of the automata enumerating the set or as the output of the automata enumerating its complement.

▲樽 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Some philosophy

András Máté Gödel 22th March

< □ > < □

-

Some philosophy

We know that P.A. is correct.

< □ > < □

We know that P.A. is incomplete because \mathcal{L}_A contains a sentence G which is true iff it is not provable and P.A. is correct.

We know that P.A. is incomplete because \mathcal{L}_A contains a sentence G which is true iff it is not provable and P.A. is correct.

 \mathcal{L}_A contains the sentence $\neg P(k)$ (where k is the G?l number of the sentence 0 = 0') which is true iff P.A. is consistent. (Let us call it *consis*.)

We know that P.A. is incomplete because \mathcal{L}_A contains a sentence G which is true iff it is not provable and P.A. is correct.

 \mathcal{L}_A contains the sentence $\neg P(k)$ (where k is the G?l number of the sentence 0 = 0') which is true iff P.A. is consistent. (Let us call it *consis*.)

We know that P.A. is consistent because it is correct.

We know that P.A. is incomplete because \mathcal{L}_A contains a sentence G which is true iff it is not provable and P.A. is correct.

 \mathcal{L}_A contains the sentence $\neg P(k)$ (where k is the G?l number of the sentence 0 = 0') which is true iff P.A. is consistent. (Let us call it *consis*.)

We know that P.A. is consistent because it is correct.

But how do we know all that?

We know that P.A. is incomplete because \mathcal{L}_A contains a sentence G which is true iff it is not provable and P.A. is correct.

 \mathcal{L}_A contains the sentence $\neg P(k)$ (where k is the G?l number of the sentence 0 = 0') which is true iff P.A. is consistent. (Let us call it *consis*.)

We know that P.A. is consistent because it is correct.

But how do we know all that?

Hilbert's program was: let us prove theorems about mathematical theories by finitary means (\approx using only bounded quantifiers). Obvious candidate for a suitable framework: a finitary fragment of P.A.

András Máté Gödel 22th March

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

We want to prove that – instead of correctness – it is enough to assume the ω -consistency, and even simple consistency of P.A. (Definition of ω -consistency comes next time.)

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

We want to prove that – instead of correctness – it is enough to assume the ω -consistency, and even simple consistency of P.A. (Definition of ω -consistency comes next time.)

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

We want to prove that – instead of correctness – it is enough to assume the ω -consistency, and even simple consistency of P.A. (Definition of ω -consistency comes next time.)

Second incompleteness theorem: *consis* is true iff it is not provable. If it is true, then *a fortiori* it cannot be provable in some fragment of P.A.

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

We want to prove that – instead of correctness – it is enough to assume the ω -consistency, and even simple consistency of P.A. (Definition of ω -consistency comes next time.)

Second incompleteness theorem: *consis* is true iff it is not provable. If it is true, then *a fortiori* it cannot be provable in some fragment of P.A.

What would we gain if we could prove *consis*?

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

We want to prove that – instead of correctness – it is enough to assume the ω -consistency, and even simple consistency of P.A. (Definition of ω -consistency comes next time.)

Second incompleteness theorem: *consis* is true iff it is not provable. If it is true, then *a fortiori* it cannot be provable in some fragment of P.A.

What would we gain if we could prove *consis*?

Nothing. It would be something like the Truth-teller.