Exponentiation is arithmetic
 First Incompleteness Theorem and Tarski's Theorem for P.A.

András Máté

22.03.2024

Σ_{0} formulas

Σ_{0} formulas

Atomic Σ_{0} formulas are of the form
$c_{1}+c_{2}=c_{3}, c_{1} \cdot c_{2}=c_{3}, c_{1}=c_{2}, c_{1} \leq c_{2}$, where c_{1}, c_{2}, c_{3} are numerals or variables.

Σ_{0} formulas

Atomic Σ_{0} formulas are of the form
$c_{1}+c_{2}=c_{3}, c_{1} \cdot c_{2}=c_{3}, c_{1}=c_{2}, c_{1} \leq c_{2}$, where c_{1}, c_{2}, c_{3} are numerals or variables.
Σ_{0} formulas (inductive definition):

Σ_{0} formulas

Atomic Σ_{0} formulas are of the form
$c_{1}+c_{2}=c_{3}, c_{1} \cdot c_{2}=c_{3}, c_{1}=c_{2}, c_{1} \leq c_{2}$, where c_{1}, c_{2}, c_{3} are numerals or variables.
Σ_{0} formulas (inductive definition):
(1) Atomic Σ_{0} formulas are Σ_{0} formulas.

Σ_{0} formulas

Atomic Σ_{0} formulas are of the form
$c_{1}+c_{2}=c_{3}, c_{1} \cdot c_{2}=c_{3}, c_{1}=c_{2}, c_{1} \leq c_{2}$, where c_{1}, c_{2}, c_{3} are numerals or variables.
Σ_{0} formulas (inductive definition):
(1) Atomic Σ_{0} formulas are Σ_{0} formulas.
(2) If F and G are Σ_{0} formulas, then so are $\neg F$ and $F \rightarrow G$.

Σ_{0} formulas

Atomic Σ_{0} formulas are of the form
$c_{1}+c_{2}=c_{3}, c_{1} \cdot c_{2}=c_{3}, c_{1}=c_{2}, c_{1} \leq c_{2}$, where c_{1}, c_{2}, c_{3} are numerals or variables.
Σ_{0} formulas (inductive definition):
(1) Atomic Σ_{0} formulas are Σ_{0} formulas.
(2) If F and G are Σ_{0} formulas, then so are $\neg F$ and $F \rightarrow G$.
(3) If F is a Σ_{0} formula, v_{i} is a variable and c is either a numeral or a variable different from v_{i}, then $\left(\forall v_{i} \leq c\right) F$ is a Σ_{0} formula.

Σ_{0} formulas

Atomic Σ_{0} formulas are of the form
$c_{1}+c_{2}=c_{3}, c_{1} \cdot c_{2}=c_{3}, c_{1}=c_{2}, c_{1} \leq c_{2}$, where c_{1}, c_{2}, c_{3} are numerals or variables.
Σ_{0} formulas (inductive definition):
(1) Atomic Σ_{0} formulas are Σ_{0} formulas.
(2) If F and G are Σ_{0} formulas, then so are $\neg F$ and $F \rightarrow G$.
(3) If F is a Σ_{0} formula, v_{i} is a variable and c is either a numeral or a variable different from v_{i}, then $\left(\forall v_{i} \leq c\right) F$ is a Σ_{0} formula.
Σ_{0} formulas contain only bounded quantifiers. A relation is Σ_{0} iff it is expressible by a Σ_{0} formula. Σ_{0} relations are called constructive arithmetic relations.

Atomic Σ_{0} formulas are of the form
$c_{1}+c_{2}=c_{3}, c_{1} \cdot c_{2}=c_{3}, c_{1}=c_{2}, c_{1} \leq c_{2}$, where c_{1}, c_{2}, c_{3} are numerals or variables.
Σ_{0} formulas (inductive definition):
(1) Atomic Σ_{0} formulas are Σ_{0} formulas.
(2) If F and G are Σ_{0} formulas, then so are $\neg F$ and $F \rightarrow G$.
(3) If F is a Σ_{0} formula, v_{i} is a variable and c is either a numeral or a variable different from v_{i}, then $\left(\forall v_{i} \leq c\right) F$ is a Σ_{0} formula.
Σ_{0} formulas contain only bounded quantifiers. A relation is Σ_{0} iff it is expressible by a Σ_{0} formula. Σ_{0} relations are called constructive arithmetic relations.
Σ_{0} sentences are effectively decidable.

Σ_{1} and Σ formulas

Σ_{1} and Σ formulas

$\exists v_{n+1} F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is a Σ_{1} formula iff $F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is Σ_{0}.

Σ_{1} and Σ formulas

$\exists v_{n+1} F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is a Σ_{1} formula iff $F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is Σ_{0}.
Σ formulas (inductive definition):

Σ_{1} and Σ formulas

$\exists v_{n+1} F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is a Σ_{1} formula iff $F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is Σ_{0}.
Σ formulas (inductive definition):
(1) Σ_{0} formulas are Σ formulas.

Σ_{1} and Σ formulas

$\exists v_{n+1} F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is a Σ_{1} formula iff $F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is Σ_{0}.
Σ formulas (inductive definition):
(1) Σ_{0} formulas are Σ formulas.
(2) If F is Σ, then $\exists v_{i} F$ is Σ, too (for any v_{i}).

Σ_{1} and Σ formulas

$\exists v_{n+1} F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is a Σ_{1} formula iff
$F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is Σ_{0}.
Σ formulas (inductive definition):
(1) Σ_{0} formulas are Σ formulas.
(2) If F is Σ, then $\exists v_{i} F$ is Σ, too (for any v_{i}).
(3) If F is Σ, then $\left(\exists v_{i} \leq c\right) F$ and $\left(\forall v_{i} \leq c\right) F$ are Σ-s, too. (c is either a numeral or a variable different from v_{i}.)

Σ_{1} and Σ formulas

$\exists v_{n+1} F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is a Σ_{1} formula iff
$F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is Σ_{0}.
Σ formulas (inductive definition):
(1) Σ_{0} formulas are Σ formulas.
(2) If F is Σ, then $\exists v_{i} F$ is Σ, too (for any v_{i}).
(3) If F is Σ, then $\left(\exists v_{i} \leq c\right) F$ and $\left(\forall v_{i} \leq c\right) F$ are Σ-s, too. (c is either a numeral or a variable different from v_{i}.)
(9) If F and G are Σ formulas, then so are $F \vee G$ and $F \wedge G$. If F is Σ_{0}, then $F \rightarrow G$ is Σ, too.
$\exists v_{n+1} F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is a Σ_{1} formula iff
$F\left(v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}\right)$ is Σ_{0}.
Σ formulas (inductive definition):
(1) Σ_{0} formulas are Σ formulas.
(2) If F is Σ, then $\exists v_{i} F$ is Σ, too (for any v_{i}).
(3) If F is Σ, then $\left(\exists v_{i} \leq c\right) F$ and $\left(\forall v_{i} \leq c\right) F$ are Σ-s, too. (c is either a numeral or a variable different from v_{i}.)
(1) If F and G are Σ formulas, then so are $F \vee G$ and $F \wedge G$. If F is Σ_{0}, then $F \rightarrow G$ is Σ, too.

The relations expressible by Σ_{1} resp. Σ formulas are Σ_{1} resp. Σ relations. Every Σ relation is Σ_{0} or Σ_{1} (later). They are the recursively enumerable relations.

Concatenation to a prime base

Concatenation to a prime base

Goal: to prove that $x^{y}=z$ is arithmetic. In the arithmetization of the syntactic notions we used $\operatorname{Pow}_{b}(x)$. If b is a prime, then $\operatorname{Pow}_{b}(x)$ holds iff every proper divisor of x is divisible by b.

Concatenation to a prime base

Goal: to prove that $x^{y}=z$ is arithmetic. In the arithmetization of the syntactic notions we used $\operatorname{Pow}_{b}(x)$. If b is a prime, then $\operatorname{Pow}_{b}(x)$ holds iff every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ_{0} :

Concatenation to a prime base

Goal: to prove that $x^{y}=z$ is arithmetic. In the arithmetization of the syntactic notions we used $\operatorname{Pow}_{b}(x)$. If b is a prime, then $\operatorname{Pow}_{b}(x)$ holds iff every proper divisor of x is divisible by b.
If p is a prime, then the following relations are Σ_{0} :
(1) $x \operatorname{div} y \leftrightarrow(\exists z \leq y)(x \cdot z=y)$

Concatenation to a prime base

Goal: to prove that $x^{y}=z$ is arithmetic. In the arithmetization of the syntactic notions we used $\operatorname{Pow}_{b}(x)$. If b is a prime, then $\operatorname{Pow}_{b}(x)$ holds iff every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ_{0} :
(1) $x \operatorname{div} y \leftrightarrow(\exists z \leq y)(x \cdot z=y)$
(2) $\operatorname{Pow}_{p}(x) \leftrightarrow(\forall z \leq x)((z \operatorname{div} x \wedge z \neq 1) \rightarrow p \operatorname{div} z)$

Concatenation to a prime base

Goal: to prove that $x^{y}=z$ is arithmetic. In the arithmetization of the syntactic notions we used $\operatorname{Pow}_{b}(x)$. If b is a prime, then $\operatorname{Pow}_{b}(x)$ holds iff every proper divisor of x is divisible by b.
If p is a prime, then the following relations are Σ_{0} :
(1) $x \operatorname{div} y \leftrightarrow(\exists z \leq y)(x \cdot z=y)$
(2) $\operatorname{Pow}_{p}(x) \leftrightarrow(\forall z \leq x)((z \operatorname{div} x \wedge z \neq 1) \rightarrow p \operatorname{div} z)$
(3) $y=p^{l_{p}(x)} \leftrightarrow\left(\operatorname{Pow}_{p}(y) \wedge y>x \wedge y>1\right) \wedge(\forall z<$ $y) \neg\left(\operatorname{Pow}_{p}(z) \wedge z>x \wedge z>1\right)$

Concatenation to a prime base

Goal: to prove that $x^{y}=z$ is arithmetic. In the arithmetization of the syntactic notions we used $\operatorname{Pow}_{b}(x)$. If b is a prime, then $\operatorname{Pow}_{b}(x)$ holds iff every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ_{0} :
(1) $x \operatorname{div} y \leftrightarrow(\exists z \leq y)(x \cdot z=y)$
(2) $\operatorname{Pow}_{p}(x) \leftrightarrow(\forall z \leq x)((z \operatorname{div} x \wedge z \neq 1) \rightarrow p \operatorname{div} z)$
(3) $y=p^{l_{p}(x)} \leftrightarrow\left(\operatorname{Pow}_{p}(y) \wedge y>x \wedge y>1\right) \wedge(\forall z<$ $y) \neg\left(\operatorname{Pow}_{p}(z) \wedge z>x \wedge z>1\right)$

For any p prime number, $x *_{p} y=z$ is Σ_{0}.

Concatenation to a prime base

Goal: to prove that $x^{y}=z$ is arithmetic. In the arithmetization of the syntactic notions we used $\operatorname{Pow}_{b}(x)$. If b is a prime, then $\operatorname{Pow}_{b}(x)$ holds iff every proper divisor of x is divisible by b.

If p is a prime, then the following relations are Σ_{0} :
(1) $x \operatorname{div} y \leftrightarrow(\exists z \leq y)(x \cdot z=y)$
(2) $\operatorname{Pow}_{p}(x) \leftrightarrow(\forall z \leq x)((z \operatorname{div} x \wedge z \neq 1) \rightarrow p \operatorname{div} z)$
(3) $y=p^{l_{p}(x)} \leftrightarrow\left(\operatorname{Pow}_{p}(y) \wedge y>x \wedge y>1\right) \wedge(\forall z<$ $y) \neg\left(\operatorname{Pow}_{p}(z) \wedge z>x \wedge z>1\right)$

For any p prime number, $x *_{p} y=z$ is Σ_{0}.
$x *_{p} y=z \leftrightarrow x \cdot p^{l_{p}(y)}+y=z \leftrightarrow\left(\exists w_{1} \leq z\right)\left(\exists w_{2} \leq z\right)\left(w_{1}=\right.$ $\left.p^{l_{p}(y)} \wedge w_{2}=x \cdot w_{1} \wedge w_{2}+y=z\right)$

Concatenation to a prime base (continuation)

Concatenation to a prime base (continuation)

The relations $x B_{p} y, x E_{p} y, x P_{p} y$ are Σ_{0}.

Concatenation to a prime base (continuation)

The relations $x B_{p} y, x E_{p} y, x P_{p} y$ are Σ_{0}.
Just copy the proof of the analogous statement from the previous class (with p instead of b and Σ_{0} instead of Arithmetic).

Concatenation to a prime base (continuation)

The relations $x B_{p} y, x E_{p} y, x P_{p} y$ are Σ_{0}.
Just copy the proof of the analogous statement from the previous class (with p instead of b and Σ_{0} instead of Arithmetic). $x_{1} *_{p} x_{2} *_{p} \ldots *_{p} x_{n}=y$ and $x_{1} *_{p} x_{2} *_{p} \ldots *_{p} x_{n} P_{p} y$ are both Σ_{0} (for $n \geq 2$). On the same way.

Where we are?

We know that prime-based concatenation and the relations begins with, ends with, is a part of are arithmetic, moreover, they are Σ_{0}.

We know that prime-based concatenation and the relations begins with, ends with, is a part of are arithmetic, moreover, they are Σ_{0}.

From these facts and the proofs of the Arithmeticity of the syntactic notions it follows that they are all Σ (inclusive P_{E} and R_{E}).

We know that prime-based concatenation and the relations begins with, ends with, is a part of are arithmetic, moreover, they are Σ_{0}.

From these facts and the proofs of the Arithmeticity of the syntactic notions it follows that they are all Σ (inclusive P_{E} and R_{E}).
It follows that $\tilde{P_{E}}$ is arithmetic, too (although not Σ).

We know that prime-based concatenation and the relations begins with, ends with, is a part of are arithmetic, moreover, they are Σ_{0}.

From these facts and the proofs of the Arithmeticity of the syntactic notions it follows that they are all Σ (inclusive P_{E} and R_{E}).
It follows that $\tilde{P_{E}}$ is arithmetic, too (although not Σ).
To prove that the adjoint $\left(A^{*}\right)$ of every arithmetic set (A) is arithmetic, too, we need to prove that $x^{y}=z$ is arithmetic.

The Finite Set Lemma

The Finite Set Lemma

The finite sets (sequences) of ordered pairs of numbers can be coded by a constructive (i.e., Σ_{0}) function K.

The Finite Set Lemma

The finite sets (sequences) of ordered pairs of numbers can be coded by a constructive (i.e., Σ_{0}) function K.

Finite Set Lemma: There is a Σ_{0} relation $K(x, y, z) \mathrm{s}$. t.

- for any finite sequence of ordered pairs of natural numbers $\left(\left(a_{1}, b_{1}\right), \ldots\left(a_{n}, b_{n}\right)\right)$, there is a number z s.t. $K(x, y, z)$ iff (x, y) is one of the $\left(a_{i}, b_{i}\right)$-s;
- for any x, y, z, if $K(x, y, z)$ then $x, y \leq z$.

The Finite Set Lemma

The finite sets (sequences) of ordered pairs of numbers can be coded by a constructive (i.e., Σ_{0}) function K.

Finite Set Lemma: There is a Σ_{0} relation $K(x, y, z)$ s. t.

- for any finite sequence of ordered pairs of natural numbers $\left(\left(a_{1}, b_{1}\right), \ldots\left(a_{n}, b_{n}\right)\right)$, there is a number z s.t. $K(x, y, z)$ iff (x, y) is one of the $\left(a_{i}, b_{i}\right)$-s;
- for any x, y, z, if $K(x, y, z)$ then $x, y \leq z$.

Proof:

(Let us identify natural numbers with their 13-ary expansion.)

The Finite Set Lemma

The finite sets (sequences) of ordered pairs of numbers can be coded by a constructive (i.e., Σ_{0}) function K.

Finite Set Lemma: There is a Σ_{0} relation $K(x, y, z)$ s. t.

- for any finite sequence of ordered pairs of natural numbers $\left(\left(a_{1}, b_{1}\right), \ldots\left(a_{n}, b_{n}\right)\right)$, there is a number z s.t. $K(x, y, z)$ iff (x, y) is one of the $\left(a_{i}, b_{i}\right)$-s;
- for any x, y, z, if $K(x, y, z)$ then $x, y \leq z$.

Proof:

(Let us identify natural numbers with their 13-ary expansion.)
Frame is a number of the form $2 t 2$, where $1(t)$ holds (it means that t is a string consisting of 1 's only).

The Finite Set Lemma

The finite sets (sequences) of ordered pairs of numbers can be coded by a constructive (i.e., Σ_{0}) function K.
Finite Set Lemma: There is a Σ_{0} relation $K(x, y, z)$ s. t.

- for any finite sequence of ordered pairs of natural numbers $\left(\left(a_{1}, b_{1}\right), \ldots\left(a_{n}, b_{n}\right)\right)$, there is a number z s.t. $K(x, y, z)$ iff (x, y) is one of the $\left(a_{i}, b_{i}\right)$-s;
- for any x, y, z, if $K(x, y, z)$ then $x, y \leq z$.

Proof:

(Let us identify natural numbers with their 13-ary expansion.)
Frame is a number of the form $2 t 2$, where $1(t)$ holds (it means that t is a string consisting of 1 's only).

$$
1(x) \leftrightarrow(\forall y \leq x)(y P x \rightarrow 1 P y)
$$

Proof of the Finite Set Lemma (continuation)

Proof of the Finite Set Lemma (continuation)

Be
$\theta=\left(\left(a_{1}, b_{1}\right), \ldots\left(a_{n}, b_{n}\right)\right)$ an arbitrary sequence;
f a frame which is longer than the longest frame occurring as a part of some a_{i} or b_{i}.

Proof of the Finite Set Lemma (continuation)

Be
$\theta=\left(\left(a_{1}, b_{1}\right), \ldots\left(a_{n}, b_{n}\right)\right)$ an arbitrary sequence;
f a frame which is longer than the longest frame occurring as a part of some a_{i} or b_{i}.

The number $f f a_{1} f b_{1} f f \ldots f f a_{n} f b_{n} f f$ is a sequence number ${ }_{n e w}$ of θ.

Proof of the Finite Set Lemma (continuation)

Be
$\theta=\left(\left(a_{1}, b_{1}\right), \ldots\left(a_{n}, b_{n}\right)\right)$ an arbitrary sequence;
f a frame which is longer than the longest frame occurring as a part of some a_{i} or b_{i}.

The number $f f a_{1} f b_{1} f f \ldots f f a_{n} f b_{n} f f$ is a sequence number ${ }_{n e w}$ of θ.
x is a maximal frame of $y(x \mathrm{mf} y)$ iff x is a frame, $x P y$ and no frame part of y is longer than $x . \mathrm{mf}$ is Σ_{0} :
$x \operatorname{mf} y \leftrightarrow x P y \wedge(\exists z \leq y)(1(z) \wedge x=2 z 2 \wedge(\neg \exists w \leq y)(1(w) \wedge 2 z w 2 P y))$

Proof of the Finite Set Lemma (continuation)

Be
$\theta=\left(\left(a_{1}, b_{1}\right), \ldots\left(a_{n}, b_{n}\right)\right)$ an arbitrary sequence;
f a frame which is longer than the longest frame occurring as a part of some a_{i} or b_{i}.

The number $f f a_{1} f b_{1} f f \ldots f f a_{n} f b_{n} f f$ is a sequence number ${ }_{n e w}$ of θ.
x is a maximal frame of $y(x \mathrm{mf} y)$ iff x is a frame, $x P y$ and no frame part of y is longer than $x . \mathrm{mf}$ is Σ_{0} :
$x \operatorname{mf} y \leftrightarrow x P y \wedge(\exists z \leq y)(1(z) \wedge x=2 z 2 \wedge(\neg \exists w \leq y)(1(w) \wedge 2 z w 2 P y))$

$$
K(x, y, z) \leftrightarrow(\exists w \leq z)(w \operatorname{mf} z \wedge w w x w y w w P z \wedge w \tilde{P} x \wedge w \tilde{P} y)
$$

Proof of the Finite Set Lemma (continuation)

Be
$\theta=\left(\left(a_{1}, b_{1}\right), \ldots\left(a_{n}, b_{n}\right)\right)$ an arbitrary sequence;
f a frame which is longer than the longest frame occurring as a part of some a_{i} or b_{i}.

The number $f f a_{1} f b_{1} f f \ldots f f a_{n} f b_{n} f f$ is a sequence number ${ }_{n e w}$ of θ.
x is a maximal frame of $y(x \mathrm{mf} y)$ iff x is a frame, $x P y$ and no frame part of y is longer than $x . \mathrm{mf}$ is Σ_{0} :
$x \operatorname{mf} y \leftrightarrow x P y \wedge(\exists z \leq y)(1(z) \wedge x=2 z 2 \wedge(\neg \exists w \leq y)(1(w) \wedge 2 z w 2 P y))$

$$
K(x, y, z) \leftrightarrow(\exists w \leq z)(w \operatorname{mf} z \wedge w w x w y w w P z \wedge w \tilde{P} x \wedge w \tilde{P} y)
$$

If z is a sequence number ${ }_{n e w}$ of θ, then $(K(x, y, z)$ holds iff (x, y) is a member of θ).
Obviously, for any triple of natural numbers (x, y, z), if $K(x, y, z)$ holds, then $x, y \leq z$.

Exponentiation is arithmetic

Exponentiation is arithmetic

E-Theorem: The relation $x^{y}=z$ is arithmetic.

Exponentiation is arithmetic

E-Theorem: The relation $x^{y}=z$ is arithmetic.

Proof:

$x^{y}=z$ holds iff there is a S set of ordered pairs s.t.
(1) $(y, z) \in S$;
(2) For every $(a, b) \in S,(a, b)=(0,1)$ or there is a $(c, d) \in S$ s.t. $(a, b)=(c+1, d \cdot x)$

Exponentiation is arithmetic

E-Theorem: The relation $x^{y}=z$ is arithmetic.
Proof:
$x^{y}=z$ holds iff there is a S set of ordered pairs s.t.
(1) $(y, z) \in S$;
(2) For every $(a, b) \in S,(a, b)=(0,1)$ or there is a $(c, d) \in S$

$$
\text { s.t. }(a, b)=(c+1, d \cdot x)
$$

$$
x^{y}=z \leftrightarrow
$$

$$
\exists w(K(x, y, w) \wedge(\forall a<w)(\forall b<w)(K(a, b, w) \rightarrow
$$

$$
((a=0 \wedge b=1) \vee(\exists c \leq a)(\exists d \leq b)(a=c+1 \wedge b=d \cdot x))))
$$

Exponentiation is arithmetic

E-Theorem: The relation $x^{y}=z$ is arithmetic.

Proof:

$x^{y}=z$ holds iff there is a S set of ordered pairs s.t.
(1) $(y, z) \in S$;
(2) For every $(a, b) \in S,(a, b)=(0,1)$ or there is a $(c, d) \in S$ s.t. $(a, b)=(c+1, d \cdot x)$

$$
\begin{aligned}
& x^{y}= z \leftrightarrow \\
& \exists w(K(x, y, w) \wedge(\forall a<w)(\forall b<w)(K(a, b, w) \rightarrow \\
&((a=0 \wedge b=1) \vee(\exists c \leq a)(\exists d \leq b)(a=c+1 \wedge b=d \cdot x))))
\end{aligned}
$$

We have now proven that exponentiation is arithmetic with the help of the Σ_{0} relation K encoding finite sequences of ordered pairs. But things become simpler if we have a function encoding the finite sequences of numbers.

Beta-functions

Beta-functions

$\beta(x, y)$ is a Beta-function iff for every finite sequence $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ there is a number w s.t. $\beta(w, 0)=a_{0}, \beta(w, 1)=a_{1}, \ldots, \beta(w, n)=a_{n}$.

Beta-functions

$\beta(x, y)$ is a Beta-function iff for every finite sequence $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ there is a number w s.t. $\beta(w, 0)=a_{0}, \beta(w, 1)=a_{1}, \ldots, \beta(w, n)=a_{n}$.
Theorem: There is a Σ_{0} Beta-function.

Beta-functions

$\beta(x, y)$ is a Beta-function iff for every finite sequence $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ there is a number w s.t. $\beta(w, 0)=a_{0}, \beta(w, 1)=a_{1}, \ldots, \beta(w, n)=a_{n}$.
Theorem: There is a Σ_{0} Beta-function.
$\operatorname{Be} \beta(w, i)$ the smallest k s.t. $K(i, k, w)$ if there is a such k and $\beta(w, i)=0$ otherwise.
$\beta(x, y)$ is a Beta-function iff for every finite sequence $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ there is a number w s.t. $\beta(w, 0)=a_{0}, \beta(w, 1)=a_{1}, \ldots, \beta(w, n)=a_{n}$.
Theorem: There is a Σ_{0} Beta-function.
$\operatorname{Be} \beta(w, i)$ the smallest k s.t. $K(i, k, w)$ if there is a such k and $\beta(w, i)=0$ otherwise.

$$
\begin{aligned}
& \beta(w, x)=y \leftrightarrow \\
& (K(x, y, w) \wedge(\forall z<y)(\neg K(x, z, w))) \vee(\neg(\exists z \leq w) K(x, z, w) \wedge y=0),
\end{aligned}
$$

therefore $\beta(w, x)=y$ is Σ_{0}.
$\beta(x, y)$ is a Beta-function iff for every finite sequence $\left(a_{0}, a_{1}, \ldots, a_{n}\right)$ there is a number w s.t.
$\beta(w, 0)=a_{0}, \beta(w, 1)=a_{1}, \ldots, \beta(w, n)=a_{n}$.
Theorem: There is a Σ_{0} Beta-function.
$\operatorname{Be} \beta(w, i)$ the smallest k s.t. $K(i, k, w)$ if there is a such k and $\beta(w, i)=0$ otherwise.

$$
\begin{aligned}
& \beta(w, x)=y \leftrightarrow \\
& (K(x, y, w) \wedge(\forall z<y)(\neg K(x, z, w))) \vee(\neg(\exists z \leq w) K(x, z, w) \wedge y=0),
\end{aligned}
$$

therefore $\beta(w, x)=y$ is Σ_{0}.
Be w a sequence number ${ }_{\text {new }}$ for $\left(0, a_{0}\right),\left(1, a_{1}\right), \ldots\left(n, a_{n}\right)$. For each $i \leq n, K\left(i, a_{i}, w\right)$ holds and there is no other m s.t. $K(i, m, w)$. Therefore $\beta(w, i)=a_{i}$.

Theorems

Theorems

E-theorem via Beta-function:

$$
\begin{aligned}
x^{y}= & z \leftrightarrow \\
& \exists w(\beta(w, y)=z \wedge(\forall n<y)(\beta(w, n+1)=\beta(w, n) \cdot x))
\end{aligned}
$$

E-theorem via Beta-function:

$$
\begin{aligned}
x^{y}= & z \leftrightarrow \\
& \exists w(\beta(w, y)=z \wedge(\forall n<y)(\beta(w, n+1)=\beta(w, n) \cdot x))
\end{aligned}
$$

Adjoint set lemma: If A is arithmetic resp. Σ, then A^{*} is arithmetic resp. Σ, too.

E-theorem via Beta-function:

$$
\begin{aligned}
& x^{y}=z \leftrightarrow \\
& \quad \exists w(\beta(w, y)=z \wedge(\forall n<y)(\beta(w, n+1)=\beta(w, n) \cdot x))
\end{aligned}
$$

Adjoint set lemma: If A is arithmetic resp. Σ, then A^{*} is arithmetic resp. Σ, too.

In the proof of this lemma for Arithmetic sets, we had a $13^{x}=y$ relation and an unbounded existential quantifier as a prefix.

E-theorem via Beta-function:

$$
\begin{aligned}
x^{y}= & z
\end{aligned} \quad \begin{aligned}
& \exists w(\beta(w, y)=z \wedge(\forall n<y)(\beta(w, n+1)=\beta(w, n) \cdot x))
\end{aligned}
$$

Adjoint set lemma: If A is arithmetic resp. Σ, then A^{*} is arithmetic resp. Σ, too.

In the proof of this lemma for Arithmetic sets, we had a $13^{x}=y$ relation and an unbounded existential quantifier as a prefix.

Tarski's theorem for \mathcal{L}_{A} :
The T_{A} set of the G?l numbers of true arithmetic sentences is not arithmetic.

E-theorem via Beta-function:

$$
\begin{aligned}
& x^{y}=z \leftrightarrow \\
& \quad \exists w(\beta(w, y)=z \wedge(\forall n<y)(\beta(w, n+1)=\beta(w, n) \cdot x))
\end{aligned}
$$

Adjoint set lemma: If A is arithmetic resp. Σ, then A^{*} is arithmetic resp. Σ, too.

In the proof of this lemma for Arithmetic sets, we had a $13^{x}=y$ relation and an unbounded existential quantifier as a prefix.

Tarski's theorem for \mathcal{L}_{A} :
The T_{A} set of the G?l numbers of true arithmetic sentences is not arithmetic.

If it were, then \tilde{T}_{A} and \tilde{T}_{A}^{*} were arithmetic, too. Therefore, \tilde{T}_{A} would have a G?l sentence and this sentence were true iff it were not true.

First Incompleteness Theorem for P.A.

Theorem P.A. is incomplete.
Because P_{E} and R_{E} are Σ, P_{E}^{*} and R_{E}^{*} are Σ, too. \tilde{P}_{E}^{*} is arithmetic, therefore \tilde{P}_{E} has an arithmetic $\tilde{\tilde{P}}^{\mathrm{G}}$? 1 sentence $H(\bar{h})$ (where $H\left(v_{1}\right)$ is the formula expressing $\left.\tilde{P}_{E}^{*}\right)$. It is true iff it is not provable in P.E. By correctness, it is true and not provable in P.E. - even less in P.A. $\neg H(\bar{h})$ is false, therefore it is not provable in P.A. Q.e.d.

Theorem P.A. is incomplete.
Because P_{E} and R_{E} are Σ, P_{E}^{*} and R_{E}^{*} are Σ, too. \tilde{P}_{E}^{*} is arithmetic, therefore \tilde{P}_{E} has an arithmetic G?1 sentence $H(\bar{h})$ (where $H\left(v_{1}\right)$ is the formula expressing $\left.\tilde{P}_{E}^{*}\right)$. It is true iff it is not provable in P.E. By correctness, it is true and not provable in P.E. - even less in P.A. $\neg H(\bar{h})$ is false, therefore it is not provable in P.A. Q.e.d.

Another way to the theorem: With some modifications of the definitions and proofs leading to the incompleteness of P.E., we could prove that \tilde{P}_{A}^{*} is arithmetic.

Theorem P.A. is incomplete.
Because P_{E} and R_{E} are Σ, P_{E}^{*} and R_{E}^{*} are Σ, too. \tilde{P}_{E}^{*} is arithmetic, therefore \tilde{P}_{E} has an arithmetic G?l sentence $H(\bar{h})$ (where $H\left(v_{1}\right)$ is the formula expressing \tilde{P}_{E}^{*}). It is true iff it is not provable in P.E. By correctness, it is true and not provable in P.E. - even less in P.A. $\neg H(\bar{h})$ is false, therefore it is not provable in P.A. Q.e.d.

Another way to the theorem: With some modifications of the definitions and proofs leading to the incompleteness of P.E., we could prove that \tilde{P}_{A}^{*} is arithmetic.
An excercise for homework (easy but important):
We know that the above sentence $H(\bar{h})$ is true (let us call it G). Let us add it to the axioms of P.A. The resulting system P.A $+G$ is correct. Is it complete?

Recursively enumerable and recursive sets and relations

Recursively enumerable and recursive sets and relations

Theorem without demonstration: Every Σ set and relation is Σ_{1}. Therefore, P_{A}^{*} and R_{A}^{*} are Σ_{1}.

Recursively enumerable and recursive sets and relations

Theorem without demonstration: Every Σ set and relation is Σ_{1}. Therefore, P_{A}^{*} and R_{A}^{*} are Σ_{1}.
Σ_{1} sets and relations are the recursively enumerable sets resp. relations. A set or relation is recursive if both the set/relation itself and its complement is Σ_{1}.

Recursively enumerable and recursive sets and relations

Theorem without demonstration: Every Σ set and relation is Σ_{1}. Therefore, P_{A}^{*} and R_{A}^{*} are Σ_{1}.
Σ_{1} sets and relations are the recursively enumerable sets resp. relations. A set or relation is recursive if both the set/relation itself and its complement is Σ_{1}.
Intuitively, a set is recursively enumerable if there is an automata (recursive function, Turing-machine, Markov algorithm) that produces all and only its members as outputs.
In other words, every member of the set occurs as its output after a finitely long time.

Recursively enumerable and recursive sets and relations

Theorem without demonstration: Every Σ set and relation is Σ_{1}. Therefore, P_{A}^{*} and R_{A}^{*} are Σ_{1}.
Σ_{1} sets and relations are the recursively enumerable sets resp. relations. A set or relation is recursive if both the set/relation itself and its complement is Σ_{1}.
Intuitively, a set is recursively enumerable if there is an automata (recursive function, Turing-machine, Markov algorithm) that produces all and only its members as outputs.
In other words, every member of the set occurs as its output after a finitely long time.
Recursive sets are decidable: after a finite time, each member of our domain occurs either as the output of the automata enumerating the set or as the output of the automata enumerating its complement.

Some philosophy

Some philosophy

We know that P.A. is correct.

Some philosophy

We know that P.A. is correct.
We know that P.A. is incomplete because \mathcal{L}_{A} contains a sentence G which is true iff it is not provable and P.A. is correct.

Some philosophy

We know that P.A. is correct.
We know that P.A. is incomplete because \mathcal{L}_{A} contains a sentence G which is true iff it is not provable and P.A. is correct. \mathcal{L}_{A} contains the sentence $\neg P(k)$ (where k is the G?l number of the sentence $0=0^{\prime}$) which is true iff P.A. is consistent. (Let us call it consis.)

Some philosophy

We know that P.A. is correct.
We know that P.A. is incomplete because \mathcal{L}_{A} contains a sentence G which is true iff it is not provable and P.A. is correct. \mathcal{L}_{A} contains the sentence $\neg P(k)$ (where k is the G?l number of the sentence $0=0^{\prime}$) which is true iff P.A. is consistent. (Let us call it consis.)

We know that P.A. is consistent because it is correct.

Some philosophy

We know that P.A. is correct.
We know that P.A. is incomplete because \mathcal{L}_{A} contains a sentence G which is true iff it is not provable and P.A. is correct. \mathcal{L}_{A} contains the sentence $\neg P(k)$ (where k is the G?l number of the sentence $0=0^{\prime}$) which is true iff P.A. is consistent. (Let us call it consis.)

We know that P.A. is consistent because it is correct.
But how do we know all that?

Some philosophy

We know that P.A. is correct.
We know that P.A. is incomplete because \mathcal{L}_{A} contains a sentence G which is true iff it is not provable and P.A. is correct.
\mathcal{L}_{A} contains the sentence $\neg P(k)$ (where k is the G?l number of the sentence $0=0^{\prime}$) which is true iff P.A. is consistent. (Let us call it consis.)

We know that P.A. is consistent because it is correct.
But how do we know all that?
Hilbert's program was: let us prove theorems about mathematical theories by finitary means (\approx using only bounded quantifiers). Obvious candidate for a suitable framework: a finitary fragment of P.A.

The Hilbert program and our theorems

The Hilbert program and our theorems

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

The Hilbert program and our theorems

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

The Hilbert program and our theorems

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

The Hilbert program and our theorems

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

We want to prove that - instead of correctness - it is enough to assume the ω-consistency, and even simple consistency of P.A. (Definition of ω-consistency comes next time.)

The Hilbert program and our theorems

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

We want to prove that - instead of correctness - it is enough to assume the ω-consistency, and even simple consistency of P.A. (Definition of ω-consistency comes next time.)

The Hilbert program and our theorems

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

We want to prove that - instead of correctness - it is enough to assume the ω-consistency, and even simple consistency of P.A. (Definition of ω-consistency comes next time.)

Second incompleteness theorem: consis is true iff it is not provable. If it is true, then a fortiori it cannot be provable in some fragment of P.A.

The Hilbert program and our theorems

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

We want to prove that - instead of correctness - it is enough to assume the ω-consistency, and even simple consistency of P.A. (Definition of ω-consistency comes next time.)

Second incompleteness theorem: consis is true iff it is not provable. If it is true, then a fortiori it cannot be provable in some fragment of P.A.

What would we gain if we could prove consis?

The Hilbert program and our theorems

The idea is that we should reduce the problem of reliability of mathematical theories to something more reliable.

We know that P.A. is correct from a metalanguage argument that was not finitary.

We know by reliable means only that P.A. is incomplete provided that it is correct.

We want to prove that - instead of correctness - it is enough to assume the ω-consistency, and even simple consistency of P.A. (Definition of ω-consistency comes next time.)

Second incompleteness theorem: consis is true iff it is not provable. If it is true, then a fortiori it cannot be provable in some fragment of P.A.

What would we gain if we could prove consis?
Nothing. It would be something like the Truth-teller.

