The incompleteness of P.E.

András Máté

08.03.2024

Sequences of expressions

Sequences of expressions

If $X_{1}, X_{2}, \ldots, X_{n}$ are expressions not containing the character
\sharp, then the expression

$$
\sharp X_{1} \sharp X_{2} \sharp \ldots \sharp X_{n} \sharp
$$

represents in \mathcal{L}_{E} the n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Sequences of expressions

If $X_{1}, X_{2}, \ldots, X_{n}$ are expressions not containing the character
\sharp, then the expression

$$
\sharp X_{1} \sharp X_{2} \sharp \ldots \sharp X_{n} \sharp
$$

represents in \mathcal{L}_{E} the n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
$\operatorname{Seq}(x): x$ is the Gödel number of a sequence (a sequence number).

Sequences of expressions

If $X_{1}, X_{2}, \ldots, X_{n}$ are expressions not containing the character
\sharp, then the expression

$$
\sharp X_{1} \sharp X_{2} \sharp \ldots \sharp X_{n} \sharp
$$

represents in \mathcal{L}_{E} the n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
$\operatorname{Seq}(x): x$ is the Gödel number of a sequence (a sequence number).
K_{11} : the set of numbers whose 13 -based numeral does not contain the digit δ (i.e. Gödel numbers of expressions not containing \sharp).

Sequences of expressions

If $X_{1}, X_{2}, \ldots, X_{n}$ are expressions not containing the character \sharp, then the expression

$$
\sharp X_{1} \sharp X_{2} \sharp \ldots \sharp X_{n} \sharp
$$

represents in \mathcal{L}_{E} the n-tuple $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
$\operatorname{Seq}(x): x$ is the Gödel number of a sequence (a sequence number).
K_{11} : the set of numbers whose 13 -based numeral does not contain the digit δ (i.e. Gödel numbers of expressions not containing \sharp).

If $a_{1}, a_{2}, \ldots, a_{n} \in K_{11}, \delta a_{1} \delta a_{2} \delta \ldots \delta a_{n} \delta$ is the sequence number of the sequence of numbers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ or of the sequence of expressions $\left(E_{a_{1}}, E_{a_{2}}, \ldots, E_{a_{n}}\right)$.

Sequences, continuation

Sequences, continuation

x is a member of $y(x \in y)$ iff y is a sequence number and x is (the Gödel number of) one of the members of the sequence.

Sequences, continuation

x is a member of $y(x \in y)$ iff y is a sequence number and x is (the Gödel number of) one of the members of the sequence. $x \prec_{z} y: E_{x}$ is a member of the sequence E_{z} which precedes the member E_{y}.

Sequences, continuation

x is a member of $y(x \in y)$ iff y is a sequence number and x is (the Gödel number of) one of the members of the sequence. $x \prec_{z} y: E_{x}$ is a member of the sequence E_{z} which precedes the member E_{y}.

Proposition Seq $x, x \in y$ and $x \prec_{z} y$ are Arithmetic.

Sequences, continuation

x is a member of $y(x \in y)$ iff y is a sequence number and x is (the Gödel number of) one of the members of the sequence. $x \prec_{z} y: E_{x}$ is a member of the sequence E_{z} which precedes the member E_{y}.

Proposition Seq $x, x \in y$ and $x \prec_{z} y$ are Arithmetic.
Seq $x \leftrightarrow \delta B x \wedge \delta E x \wedge x \neq \delta \wedge \delta \delta \tilde{P} x \wedge \forall y \leq x(\delta 0 y P x \rightarrow \delta B y)$

Sequences, continuation

x is a member of $y(x \in y)$ iff y is a sequence number and x is (the Gödel number of) one of the members of the sequence. $x \prec_{z} y: E_{x}$ is a member of the sequence E_{z} which precedes the member E_{y}.

Proposition Seq $x, x \in y$ and $x \prec_{z} y$ are Arithmetic.
Seq $x \leftrightarrow \delta B x \wedge \delta E x \wedge x \neq \delta \wedge \delta \delta \tilde{P} x \wedge \forall y \leq x(\delta 0 y P x \rightarrow \delta B y)$

$$
x \in y \leftrightarrow \operatorname{Seq} y \wedge \delta x \delta P y \wedge \delta \tilde{P} x
$$

x is a member of $y(x \in y)$ iff y is a sequence number and x is (the Gödel number of) one of the members of the sequence. $x \prec_{z} y: E_{x}$ is a member of the sequence E_{z} which precedes the member E_{y}.
Proposition Seq $x, x \in y$ and $x \prec_{z} y$ are Arithmetic.
Seq $x \leftrightarrow \delta B x \wedge \delta E x \wedge x \neq \delta \wedge \delta \delta \tilde{P} x \wedge \forall y \leq x(\delta 0 y P x \rightarrow \delta B y)$

$$
x \in y \leftrightarrow \operatorname{Seq} y \wedge \delta x \delta P y \wedge \delta \tilde{P} x
$$

$x \prec_{z} y \leftrightarrow \operatorname{Seq} z \wedge x \in z \wedge y \in z \wedge \exists w \leq z(w B z \wedge x \in z \wedge y \notin z)$

Explicit definitions of terms and formulas

Explicit definitions of terms and formulas

$\mathcal{R}_{t}(X, Y, Z)$ iff Z is one of the expressions $X^{\prime},(X+Y)$, $(X \cdot Y),(X \mathbf{E} Y) .\left(X, Y, Z\right.$: arbitrary expressions.) \mathcal{R}_{t} is the formation relation for terms.

Explicit definitions of terms and formulas

$\mathcal{R}_{t}(X, Y, Z)$ iff Z is one of the expressions $X^{\prime},(X+Y)$, $(X \cdot Y),(X \mathbf{E} Y) \cdot\left(X, Y, Z\right.$: arbitrary expressions.) \mathcal{R}_{t} is the formation relation for terms.

A formation sequence for terms is a finite sequence $X_{1}, X_{2}, \ldots, X_{n}$ of expressions s.t. every X_{i} is either a variable, or a numeral, or for some $j, k<i \mathcal{R}_{t}\left(X_{j}, X_{k}, X_{i}\right)$ holds.

Explicit definitions of terms and formulas

$\mathcal{R}_{t}(X, Y, Z)$ iff Z is one of the expressions $X^{\prime},(X+Y)$, $(X \cdot Y),(X \mathbf{E} Y) \cdot\left(X, Y, Z\right.$: arbitrary expressions.) \mathcal{R}_{t} is the formation relation for terms.

A formation sequence for terms is a finite sequence $X_{1}, X_{2}, \ldots, X_{n}$ of expressions s.t. every X_{i} is either a variable, or a numeral, or for some $j, k<i \mathcal{R}_{t}\left(X_{j}, X_{k}, X_{i}\right)$ holds.
X is a term iff there is a formation sequence of terms s.t. X is a member of it.

Explicit definitions of terms and formulas

$\mathcal{R}_{t}(X, Y, Z)$ iff Z is one of the expressions $X^{\prime},(X+Y)$, $(X \cdot Y),(X \mathbf{E} Y) .\left(X, Y, Z\right.$: arbitrary expressions.) \mathcal{R}_{t} is the formation relation for terms.

A formation sequence for terms is a finite sequence $X_{1}, X_{2}, \ldots, X_{n}$ of expressions s.t. every X_{i} is either a variable, or a numeral, or for some $j, k<i \mathcal{R}_{t}\left(X_{j}, X_{k}, X_{i}\right)$ holds.
X is a term iff there is a formation sequence of terms s.t. X is a member of it.

Formulas: the procedure is the same. We define a formation relation for formulas, construction sequences for formulas and an expression is a formula iff there is a formation sequence for it.

Arithmetization of P.E.

Use the following abbreviations:

- $x \operatorname{imp} y$ for the Gödel number of $\left(E_{x} \rightarrow E_{y}\right)$;
- $\operatorname{neg}(x)$ for the Gödel number of $\neg E_{x}$;
- $x \mathrm{pl} y$ for the Gödel number of $\left(E_{x}+E_{y}\right)$;
- $x \operatorname{tim} y$ for the Gödel number of $\left(E_{x} \cdot E_{y}\right)$;
- $x \exp y$ for the Gödel number of $\left(E_{x} \mathbf{E} E_{y}\right)$;
- $\mathrm{s}(x)$ for the Gödel number of E_{x}^{\prime};
- x id y for the Gödel number of $E_{x}=E_{y}$;
- x le y for the Gödel number of $E_{x} \leq E_{y}$.

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.
(1) $\mathrm{Sb}(x)-E_{x}$ is a string of commas.

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.
(1) $\mathrm{Sb}(x)-E_{x}$ is a string of commas.
(2) $\operatorname{Var}(x)-E_{x}$ is a variable.

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.
(1) $\mathrm{Sb}(x)-E_{x}$ is a string of commas.
(2) $\operatorname{Var}(x)-E_{x}$ is a variable.
(3) $\operatorname{Num}(x)-E_{x}$ is a numeral.

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.
(1) $\mathrm{Sb}(x)-E_{x}$ is a string of commas.
(2) $\operatorname{Var}(x)-E_{x}$ is a variable.
(3) $\operatorname{Num}(x)-E_{x}$ is a numeral.
(1) $R_{1}(x, y, z)$ - the relation $\mathcal{R}_{t}\left(E_{x}, E_{y}, E_{z}\right)$ holds.

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.
(1) $\mathrm{Sb}(x)-E_{x}$ is a string of commas.
(2) $\operatorname{Var}(x)-E_{x}$ is a variable.
(3) $\operatorname{Num}(x)-E_{x}$ is a numeral.
(1) $R_{1}(x, y, z)$ - the relation $\mathcal{R}_{t}\left(E_{x}, E_{y}, E_{z}\right)$ holds.
(6) $\operatorname{Seqt}(x)-E_{x}$ is a formation sequence for terms.

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.
(1) $\mathrm{Sb}(x)-E_{x}$ is a string of commas.
(2) $\operatorname{Var}(x)-E_{x}$ is a variable.
(3) $\operatorname{Num}(x)-E_{x}$ is a numeral.
(1) $R_{1}(x, y, z)$ - the relation $\mathcal{R}_{t}\left(E_{x}, E_{y}, E_{z}\right)$ holds.
(6) $\operatorname{Seqt}(x)-E_{x}$ is a formation sequence for terms.
(6) $\operatorname{tm}(x)-E_{x}$ is a term.

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.
(1) $\mathrm{Sb}(x)-E_{x}$ is a string of commas.
(2) $\operatorname{Var}(x)-E_{x}$ is a variable.
(3) $\operatorname{Num}(x)-E_{x}$ is a numeral.
(1) $R_{1}(x, y, z)$ - the relation $\mathcal{R}_{t}\left(E_{x}, E_{y}, E_{z}\right)$ holds.
(0) $\operatorname{Seqt}(x)-E_{x}$ is a formation sequence for terms.
(6) $\operatorname{tm}(x)-E_{x}$ is a term.
(1) $\mathrm{f}_{0}(x)-E_{x}$ is an atomic formula.

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.
(1) $\mathrm{Sb}(x)-E_{x}$ is a string of commas.
(2) $\operatorname{Var}(x)-E_{x}$ is a variable.
(3) $\operatorname{Num}(x)-E_{x}$ is a numeral.
(1) $R_{1}(x, y, z)$ - the relation $\mathcal{R}_{t}\left(E_{x}, E_{y}, E_{z}\right)$ holds.
(0) $\operatorname{Seqt}(x)-E_{x}$ is a formation sequence for terms.
(6) $\operatorname{tm}(x)-E_{x}$ is a term.
(1) $\mathrm{f}_{0}(x)-E_{x}$ is an atomic formula.
(8) $\operatorname{Gen}(x, y)$ - for some variable $w, E_{y}=\forall w E_{x}$

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.
(1) $\mathrm{Sb}(x)-E_{x}$ is a string of commas.
(2) $\operatorname{Var}(x)-E_{x}$ is a variable.
(3) $\operatorname{Num}(x)-E_{x}$ is a numeral.
(1) $R_{1}(x, y, z)$ - the relation $\mathcal{R}_{t}\left(E_{x}, E_{y}, E_{z}\right)$ holds.
(0) $\operatorname{Seqt}(x)-E_{x}$ is a formation sequence for terms.
(6) $\operatorname{tm}(x)-E_{x}$ is a term.
(1) $\mathrm{f}_{0}(x)-E_{x}$ is an atomic formula.
(8) $\operatorname{Gen}(x, y)$ - for some variable $w, E_{y}=\forall w E_{x}$
(3) $R_{2}(x, y, z)$ - the relation $\mathcal{R}_{f}\left(E_{x}, E_{y}, E_{z}\right)$ holds.

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.
(1) $\mathrm{Sb}(x)-E_{x}$ is a string of commas.
(2) $\operatorname{Var}(x)-E_{x}$ is a variable.
(3) $\operatorname{Num}(x)-E_{x}$ is a numeral.
(1) $R_{1}(x, y, z)$ - the relation $\mathcal{R}_{t}\left(E_{x}, E_{y}, E_{z}\right)$ holds.
(0) $\operatorname{Seqt}(x)-E_{x}$ is a formation sequence for terms.
(6) $\operatorname{tm}(x)-E_{x}$ is a term.
(1) $\mathrm{f}_{0}(x)-E_{x}$ is an atomic formula.
(8) $\operatorname{Gen}(x, y)$ - for some variable $w, E_{y}=\forall w E_{x}$
(0) $R_{2}(x, y, z)$ - the relation $\mathcal{R}_{f}\left(E_{x}, E_{y}, E_{z}\right)$ holds.
(10) $\operatorname{Seqf}(x)-E_{x}$ is a formation sequence for formulas.

Homework

Prove that the following relations are Arithmetic. Use bounded quantifiers of the form $\forall y \leq x$ if possible.
(1) $\mathrm{Sb}(x)-E_{x}$ is a string of commas.
(2) $\operatorname{Var}(x)-E_{x}$ is a variable.
(3) $\operatorname{Num}(x)-E_{x}$ is a numeral.
(1) $R_{1}(x, y, z)$ - the relation $\mathcal{R}_{t}\left(E_{x}, E_{y}, E_{z}\right)$ holds.
(0) $\operatorname{Seqt}(x)-E_{x}$ is a formation sequence for terms.
(6) $\operatorname{tm}(x)-E_{x}$ is a term.
(1) $\mathrm{f}_{0}(x)-E_{x}$ is an atomic formula.
(8) $\operatorname{Gen}(x, y)$ - for some variable $w, E_{y}=\forall w E_{x}$
(0. $R_{2}(x, y, z)$ - the relation $\mathcal{R}_{f}\left(E_{x}, E_{y}, E_{z}\right)$ holds.
(10) $\operatorname{Seqf}(x)-E_{x}$ is a formation sequence for formulas.
(1) $\mathrm{fm}(x)-E_{x}$ is a formula.

Arithmetization of the syntactic notions

Arithmetization of the syntactic notions

$\mathrm{Sb}(x), \operatorname{Var}(x), \operatorname{Num}(x), R_{1}(x, y, z), \operatorname{Seqt}(x), \operatorname{tm}(x), \mathrm{f}_{0}(x)$, $\operatorname{Gen}(x, y), R_{2}(x, y, z), \operatorname{Seqf}(x), \mathrm{fm}(x)$ are all Arithmetic. (11 propositions. They were your homework.)

Arithmetization of the syntactic notions

$\mathrm{Sb}(x), \operatorname{Var}(x), \operatorname{Num}(x), R_{1}(x, y, z), \operatorname{Seqt}(x), \operatorname{tm}(x), \mathrm{f}_{0}(x)$, $\operatorname{Gen}(x, y), R_{2}(x, y, z), \operatorname{Seqf}(x), \mathrm{fm}(x)$ are all Arithmetic. (11 propositions. They were your homework.)
$12 \operatorname{Ax}(x)\left(E_{x}\right.$ is an axiom) is Arithmetic.

Arithmetization of the syntactic notions

$\mathrm{Sb}(x), \operatorname{Var}(x), \operatorname{Num}(x), R_{1}(x, y, z), \operatorname{Seqt}(x), \operatorname{tm}(x), \mathrm{f}_{0}(x)$, $\operatorname{Gen}(x, y), R_{2}(x, y, z), \operatorname{Seqf}(x), \mathrm{fm}(x)$ are all Arithmetic. (11 propositions. They were your homework.)
$12 \operatorname{Ax}(x)\left(E_{x}\right.$ is an axiom) is Arithmetic.
$\mathrm{L}_{k}(x), \mathrm{N}_{k}(x): E_{x}$ is an axiom of the scheme L_{k} resp. N_{k}. We should prove that they are all Arithmetic.

Arithmetization of the syntactic notions

$\mathrm{Sb}(x), \operatorname{Var}(x), \operatorname{Num}(x), R_{1}(x, y, z), \operatorname{Seqt}(x), \operatorname{tm}(x), \mathrm{f}_{0}(x)$, $\operatorname{Gen}(x, y), R_{2}(x, y, z), \operatorname{Seqf}(x), \mathrm{fm}(x)$ are all Arithmetic. (11 propositions. They were your homework.)
$12 \operatorname{Ax}(x)\left(E_{x}\right.$ is an axiom) is Arithmetic.
$\mathrm{L}_{k}(x), \mathrm{N}_{k}(x): E_{x}$ is an axiom of the scheme L_{k} resp. N_{k}. We should prove that they are all Arithmetic.
E.g.
$\mathrm{L}_{3}(x) \leftrightarrow \exists y \leq x \exists z \leq x(\mathrm{fm}(y) \wedge \mathrm{fm}(z) \wedge x=(\operatorname{neg}(y) \operatorname{imp} \operatorname{neg}(z))$ $\operatorname{imp}(z \operatorname{imp} y))$

Arithmetization of the syntactic notions

$\mathrm{Sb}(x), \operatorname{Var}(x), \operatorname{Num}(x), R_{1}(x, y, z), \operatorname{Seqt}(x), \operatorname{tm}(x), \mathrm{f}_{0}(x)$, $\operatorname{Gen}(x, y), R_{2}(x, y, z), \operatorname{Seqf}(x), \mathrm{fm}(x)$ are all Arithmetic. (11 propositions. They were your homework.)
$12 \operatorname{Ax}(x)\left(E_{x}\right.$ is an axiom) is Arithmetic.
$\mathrm{L}_{k}(x), \mathrm{N}_{k}(x): E_{x}$ is an axiom of the scheme L_{k} resp. N_{k}. We should prove that they are all Arithmetic.
E.g.
$\mathrm{L}_{3}(x) \leftrightarrow \exists y \leq x \exists z \leq x(\mathrm{fm}(y) \wedge \mathrm{fm}(z) \wedge x=(\operatorname{neg}(y) \operatorname{imp} \operatorname{neg}(z))$ $\operatorname{imp}(z \operatorname{imp} y))$
$\mathrm{L}_{5}(x) \leftrightarrow \exists y \leq x \exists z \leq x(\mathrm{fm}(y) \wedge \operatorname{Var}(z) \wedge z \tilde{P} y \wedge x=y \operatorname{imp} 9 z y)$.

Arithmetization of the syntactic notions

$\mathrm{Sb}(x), \operatorname{Var}(x), \operatorname{Num}(x), R_{1}(x, y, z), \operatorname{Seqt}(x), \operatorname{tm}(x), \mathrm{f}_{0}(x)$, $\operatorname{Gen}(x, y), R_{2}(x, y, z), \operatorname{Seqf}(x), \mathrm{fm}(x)$ are all Arithmetic. (11 propositions. They were your homework.)
$12 \operatorname{Ax}(x)\left(E_{x}\right.$ is an axiom) is Arithmetic.
$\mathrm{L}_{k}(x), \mathrm{N}_{k}(x): E_{x}$ is an axiom of the scheme L_{k} resp. N_{k}. We should prove that they are all Arithmetic.
E.g.
$\mathrm{L}_{3}(x) \leftrightarrow \exists y \leq x \exists z \leq x(\mathrm{fm}(y) \wedge \mathrm{fm}(z) \wedge x=(\operatorname{neg}(y) \operatorname{imp} \operatorname{neg}(z))$ $\operatorname{imp}(z \operatorname{imp} y))$
$\mathrm{L}_{5}(x) \leftrightarrow \exists y \leq x \exists z \leq x(\mathrm{fm}(y) \wedge \operatorname{Var}(z) \wedge z \tilde{P} y \wedge x=y \mathrm{imp} 9 z y)$.
$N_{1}-N_{11}$ are singular axioms having the Gödel numbers $g_{1}-g_{11}$. Therefore, $\mathrm{N}_{i}(x) \leftrightarrow x=g_{i}$ (for $i \leq 11$).

Arithmetization of the syntactic notions

$\mathrm{Sb}(x), \operatorname{Var}(x), \operatorname{Num}(x), R_{1}(x, y, z), \operatorname{Seqt}(x), \operatorname{tm}(x), \mathrm{f}_{0}(x)$, $\operatorname{Gen}(x, y), R_{2}(x, y, z), \operatorname{Seqf}(x), \mathrm{fm}(x)$ are all Arithmetic. (11 propositions. They were your homework.)
$12 \operatorname{Ax}(x)\left(E_{x}\right.$ is an axiom) is Arithmetic.
$\mathrm{L}_{k}(x), \mathrm{N}_{k}(x): E_{x}$ is an axiom of the scheme L_{k} resp. N_{k}. We should prove that they are all Arithmetic.
E.g.
$\mathrm{L}_{3}(x) \leftrightarrow \exists y \leq x \exists z \leq x(\operatorname{fm}(y) \wedge \mathrm{fm}(z) \wedge x=(\operatorname{neg}(y) \operatorname{imp} \operatorname{neg}(z))$ $\operatorname{imp}(z \operatorname{imp} y))$
$\mathrm{L}_{5}(x) \leftrightarrow \exists y \leq x \exists z \leq x(\mathrm{fm}(y) \wedge \operatorname{Var}(z) \wedge z \tilde{P} y \wedge x=y \mathrm{imp} 9 z y)$.
$N_{1}-N_{11}$ are singular axioms having the Gödel numbers $g_{1}-g_{11}$. Therefore, $\mathrm{N}_{i}(x) \leftrightarrow x=g_{i}$ (for $i \leq 11$).
$\mathrm{N}_{12}(x)$: a bit difficult because of the difficult structure of the axiom N_{12}.

Continuation of the arithmetization

Continuation of the arithmetization

13 M.P. (x, y, z) : E_{z} follows form E_{x} and E_{y} by Rule 1. (modus ponens).

Continuation of the arithmetization

13 M.P. (x, y, z) : E_{z} follows form E_{x} and E_{y} by Rule 1. (modus ponens).
$14 \operatorname{Der}(x, y, z) \leftrightarrow \operatorname{M.P.}(x, y, z) \vee \operatorname{Gen}(x, z)$

Continuation of the arithmetization

13 M.P. (x, y, z) : E_{z} follows form E_{x} and E_{y} by Rule 1. (modus ponens).
$14 \operatorname{Der}(x, y, z) \leftrightarrow \operatorname{M.P.}(x, y, z) \vee \operatorname{Gen}(x, z)$
$15 \operatorname{Pf}(x): E_{x}$ is a proof in the system P.E.

$$
\operatorname{Pf}(x) \leftrightarrow \operatorname{Seq}(x) \wedge \forall y \in x\left(A(y) \vee \exists z, w \prec_{x} y \operatorname{Der}(z, w, y)\right)
$$

Continuation of the arithmetization

13 M.P. (x, y, z) : E_{z} follows form E_{x} and E_{y} by Rule 1. (modus ponens).
$14 \operatorname{Der}(x, y, z) \leftrightarrow \operatorname{M.P.}(x, y, z) \vee \operatorname{Gen}(x, z)$
$15 \operatorname{Pf}(x): E_{x}$ is a proof in the system P.E.

$$
\operatorname{Pf}(x) \leftrightarrow \operatorname{Seq}(x) \wedge \forall y \in x\left(A(y) \vee \exists z, w \prec_{x} y \operatorname{Der}(z, w, y)\right)
$$

$16 P_{E}(x): E_{x}$ is provable in P.E.

$$
P_{E}(x) \leftrightarrow \exists y(\operatorname{Pf}(y) \wedge x \in y)
$$

Continuation of the arithmetization

13 M.P. (x, y, z) : E_{z} follows form E_{x} and E_{y} by Rule 1. (modus ponens).
$14 \operatorname{Der}(x, y, z) \leftrightarrow \operatorname{M.P.}(x, y, z) \vee \operatorname{Gen}(x, z)$
$15 \operatorname{Pf}(x): E_{x}$ is a proof in the system P.E.

$$
\operatorname{Pf}(x) \leftrightarrow \operatorname{Seq}(x) \wedge \forall y \in x\left(A(y) \vee \exists z, w \prec_{x} y \operatorname{Der}(z, w, y)\right)
$$

$16 P_{E}(x): E_{x}$ is provable in P.E.

$$
P_{E}(x) \leftrightarrow \exists y(\operatorname{Pf}(y) \wedge x \in y)
$$

$17 R_{E}(x): E_{x}$ is refutable in P.E.

$$
R_{E}(x) \leftrightarrow P_{E}(n e g(x))
$$

The First Incompleteness Theorem for P.E.

The First Incompleteness Theorem for P.E.

$P_{E}\left(v_{1}\right)$ expresses the P_{E} set of the Gödel numbers of the provable formulas of P.E., $R_{E}\left(v_{1}\right)$ expresses the R_{E} set of the Gödel numbers of the refutable ones.

The First Incompleteness Theorem for P.E.

$P_{E}\left(v_{1}\right)$ expresses the P_{E} set of the Gödel numbers of the provable formulas of P.E., $R_{E}\left(v_{1}\right)$ expresses the R_{E} set of the Gödel numbers of the refutable ones.
$\neg P_{E}\left(v_{1}\right)$ expresses $\tilde{P_{E}}$, hence (according to an earlier lemma) some formula $H\left(v_{1}\right)$ expresses ${\tilde{P_{E}}}^{*}$.

The First Incompleteness Theorem for P.E.

$P_{E}\left(v_{1}\right)$ expresses the P_{E} set of the Gödel numbers of the provable formulas of P.E., $R_{E}\left(v_{1}\right)$ expresses the R_{E} set of the Gödel numbers of the refutable ones.
$\neg P_{E}\left(v_{1}\right)$ expresses $\tilde{P_{E}}$, hence (according to an earlier lemma) some formula $H\left(v_{1}\right)$ expresses ${\tilde{P_{E}}}^{*}$.
The diagonal formula $H[\bar{h}]$ is a Gödel sentence of the set $\tilde{P_{E}}$. This sentence is true iff it is not provable.

The First Incompleteness Theorem for P.E.

$P_{E}\left(v_{1}\right)$ expresses the P_{E} set of the Gödel numbers of the provable formulas of P.E., $R_{E}\left(v_{1}\right)$ expresses the R_{E} set of the Gödel numbers of the refutable ones.
$\neg P_{E}\left(v_{1}\right)$ expresses $\tilde{P_{E}}$, hence (according to an earlier lemma) some formula $H\left(v_{1}\right)$ expresses ${\tilde{P_{E}}}^{*}$.
The diagonal formula $H[\bar{h}]$ is a Gödel sentence of the set $\tilde{P_{E}}$. This sentence is true iff it is not provable.

Because P.E. is correct, the diagonal sentence is true and not provable. But its negation is not provable, either, because it is false. P.E. is not complete, q. e. d.

The First Incompleteness Theorem for P.E.

$P_{E}\left(v_{1}\right)$ expresses the P_{E} set of the Gödel numbers of the provable formulas of P.E., $R_{E}\left(v_{1}\right)$ expresses the R_{E} set of the Gödel numbers of the refutable ones.
$\neg P_{E}\left(v_{1}\right)$ expresses $\tilde{P_{E}}$, hence (according to an earlier lemma) some formula $H\left(v_{1}\right)$ expresses ${\tilde{P_{E}}}^{*}$.
The diagonal formula $H[\bar{h}]$ is a Gödel sentence of the set $\tilde{P_{E}}$. This sentence is true iff it is not provable.

Because P.E. is correct, the diagonal sentence is true and not provable. But its negation is not provable, either, because it is false. P.E. is not complete, q. e. d.

The dual way to the theorem: R_{E} is Arithmetic, therefore R_{E}^{*} is Arithmetic, too.

The First Incompleteness Theorem for P.E.

$P_{E}\left(v_{1}\right)$ expresses the P_{E} set of the Gödel numbers of the provable formulas of P.E., $R_{E}\left(v_{1}\right)$ expresses the R_{E} set of the Gödel numbers of the refutable ones.
$\neg P_{E}\left(v_{1}\right)$ expresses $\tilde{P_{E}}$, hence (according to an earlier lemma) some formula $H\left(v_{1}\right)$ expresses ${\tilde{P_{E}}}^{*}$.
The diagonal formula $H[\bar{h}]$ is a Gödel sentence of the set $\tilde{P_{E}}$. This sentence is true iff it is not provable.

Because P.E. is correct, the diagonal sentence is true and not provable. But its negation is not provable, either, because it is false. P.E. is not complete, q. e. d.

The dual way to the theorem: R_{E} is Arithmetic, therefore R_{E}^{*} is Arithmetic, too.

Hence; R_{E} has a Gödel sentence. This sentence is true iff it is refutable. By correctness, the sentence is false but not refutable. Its negation can't be refutable because it is true. Q.e.d.

