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Sequences of expressions

If X1, X2, . . . , Xn are expressions not containing the character

], then the expression

]X1]X2] . . . ]Xn]

represents in LE the n-tuple (X1, X2, . . . , Xn).

Seq(x): x is the Gödel number of a sequence (a

sequence number).

K11: the set of numbers whose 13-based numeral does not

contain the digit δ (i.e. Gödel numbers of expressions not
containing ]).

If a1, a2, . . . , an ∈ K11, δa1δa2δ . . . δanδ is the sequence
number of the sequence of numbers (a1, a2, . . . , an) or of the
sequence of expressions (Ea1 , Ea2 , . . . , Ean).
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Sequences, continuation

x is a member of y (x ∈ y) i� y is a sequence number and x is

(the Gödel number of) one of the members of the sequence.

x ≺z y : Ex is a member of the sequence Ez which precedes the

member Ey.

Proposition Seq x, x ∈ y and x ≺z y are Arithmetic.

Seq x↔ δBx ∧ δEx ∧ x 6= δ ∧ δδP̃x ∧ ∀y ≤ x(δ0yPx→ δBy)

x ∈ y ↔ Seq y ∧ δxδPy ∧ δP̃x

x ≺z y ↔ Seq z ∧ x ∈ z ∧ y ∈ z ∧ ∃w ≤ z(wBz ∧ x ∈ z ∧ y /∈ z)
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Explicit de�nitions of terms and formulas

Rt(X, Y, Z) i� Z is one of the expressions X
′
, (X + Y ),

(X · Y ), (XEY ). (X, Y, Z: arbitrary expressions.) Rt is the

formation relation for terms.

A formation sequence for terms is a �nite sequence

X1, X2, . . . , Xn of expressions s.t. every Xi is either a variable,

or a numeral, or for some j, k < i Rt(Xj , Xk, Xi) holds.

X is a term i� there is a formation sequence of terms s.t. X is a

member of it.

Formulas: the procedure is the same. We de�ne a formation

relation for formulas, construction sequences for formulas and an

expression is a formula i� there is a formation sequence for it.
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Arithmetization of P.E.

Use the following abbreviations:

x imp y for the Gödel number of (Ex → Ey);

neg(x) for the Gödel number of ¬Ex ;

x pl y for the Gödel number of (Ex + Ey);

x tim y for the Gödel number of (Ex · Ey);

x exp y for the Gödel number of (ExEEy);

s(x) for the Gödel number of E
′
x;

x id y for the Gödel number of Ex = Ey;

x le y for the Gödel number of Ex ≤ Ey.
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Homework

Prove that the following relations are Arithmetic. Use bounded

quanti�ers of the form ∀y ≤ x if possible.

1 Sb(x) � Ex is a string of commas.

2 Var(x) � Ex is a variable.

3 Num(x) � Ex is a numeral.

4 R1(x, y, z) � the relation Rt(Ex, Ey, Ez) holds.

5 Seqt(x) � Ex is a formation sequence for terms.

6 tm (x) � Ex is a term.

7 f0(x) � Ex is an atomic formula.

8 Gen(x, y) � for some variable w, Ey = ∀wEx

9 R2(x, y, z) � the relation Rf (Ex, Ey, Ez) holds.

10 Seqf(x) � Ex is a formation sequence for formulas.

11 fm(x) � Ex is a formula.
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Arithmetization of the syntactic notions

Sb(x), Var(x), Num(x), R1(x, y, z), Seqt(x), tm(x), f0(x),
Gen(x, y), R2(x, y, z), Seqf(x), fm(x) are all Arithmetic. (11

propositions. They were your homework.)

12 Ax(x) (Ex is an axiom) is Arithmetic.

Lk(x), Nk(x): Ex is an axiom of the scheme Lk resp. Nk. We

should prove that they are all Arithmetic.

E.g.

L3(x)↔ ∃y ≤ x∃z ≤ x(fm(y) ∧ fm(z) ∧ x = (neg(y) imp neg(z))
imp (z imp y))

L5(x)↔ ∃y ≤ x∃z ≤ x(fm(y)∧Var(z) ∧zP̃ y ∧ x = y imp 9zy).

N1�N11 are singular axioms having the Gödel numbers g1�g11.
Therefore, Ni(x)↔ x = gi (for i ≤ 11).

N12(x): a bit di�cult because of the di�cult structure of the

axiom N12.
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Continuation of the arithmetization

13 M.P.(x, y, z): Ez follows form Ex and Ey by Rule 1. (modus

ponens).

14 Der(x, y, z)↔ M.P.(x, y, z)∨ Gen(x, z)

15 Pf(x): Ex is a proof in the system P.E.

Pf(x)↔ Seq(x) ∧ ∀y ∈ x(A(y) ∨ ∃z, w ≺x yDer(z, w, y))

16 PE(x): Ex is provable in P.E.

PE(x)↔ ∃y(Pf(y) ∧ x ∈ y)

17 RE(x): Ex is refutable in P.E.

RE(x)↔ PE(neg(x))
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The First Incompleteness Theorem for P.E.

PE(v1) expresses the PE set of the Gödel numbers of the

provable formulas of P.E., RE(v1) expresses the RE set of the

Gödel numbers of the refutable ones.

¬PE(v1) expresses P̃E , hence (according to an earlier lemma)

some formula H(v1) expresses P̃E
∗
.

The diagonal formula H[h̄] is a Gödel sentence of the set P̃E .

This sentence is true i� it is not provable.

Because P.E. is correct, the diagonal sentence is true and not

provable. But its negation is not provable, either, because it is

false. P.E. is not complete, q. e. d.

The dual way to the theorem: RE is Arithmetic, therefore R∗
E is

Arithmetic, too.

Hence; RE has a Gödel sentence. This sentence is true i� it is

refutable. By correctness, the sentence is false but not refutable.

Its negation can't be refutable because it is true. Q.e.d.
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