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arithmetic and Arithmetic sets and relations

Two sentences are called (arithmetically) equivalent i� they
have the same truth-value. n-variable open formulas are
equivalent i� they have the same truth value for any
substitution of the variables with numerals.

F (v1) expresses the set of numbers A i�

F (n̄) is true ↔ n ∈ A
The regular formula F (v1, v2, . . . vn) expresses the relation (set
of n-tuples of numbers) R i�

F (k̄1, k̄2, . . . k̄n) is true ↔ R(k1, k2, . . . kn)

A set or relation of natural numbers is Arithmetic i� it can be
expressed by a regular formula of LE .

It is arithmetic i� the expressing formula does not contain E.

A function f with n variables is Arithmetic i� the corresponding
n+ 1-ary relation is Arithmetic.

András Máté Gödel 1st March



arithmetic and Arithmetic sets and relations

Two sentences are called (arithmetically) equivalent i� they
have the same truth-value. n-variable open formulas are
equivalent i� they have the same truth value for any
substitution of the variables with numerals.

F (v1) expresses the set of numbers A i�

F (n̄) is true ↔ n ∈ A
The regular formula F (v1, v2, . . . vn) expresses the relation (set
of n-tuples of numbers) R i�

F (k̄1, k̄2, . . . k̄n) is true ↔ R(k1, k2, . . . kn)

A set or relation of natural numbers is Arithmetic i� it can be
expressed by a regular formula of LE .

It is arithmetic i� the expressing formula does not contain E.

A function f with n variables is Arithmetic i� the corresponding
n+ 1-ary relation is Arithmetic.

András Máté Gödel 1st March



arithmetic and Arithmetic sets and relations

Two sentences are called (arithmetically) equivalent i� they
have the same truth-value. n-variable open formulas are
equivalent i� they have the same truth value for any
substitution of the variables with numerals.

F (v1) expresses the set of numbers A i�

F (n̄) is true ↔ n ∈ A

The regular formula F (v1, v2, . . . vn) expresses the relation (set
of n-tuples of numbers) R i�

F (k̄1, k̄2, . . . k̄n) is true ↔ R(k1, k2, . . . kn)

A set or relation of natural numbers is Arithmetic i� it can be
expressed by a regular formula of LE .

It is arithmetic i� the expressing formula does not contain E.

A function f with n variables is Arithmetic i� the corresponding
n+ 1-ary relation is Arithmetic.

András Máté Gödel 1st March



arithmetic and Arithmetic sets and relations

Two sentences are called (arithmetically) equivalent i� they
have the same truth-value. n-variable open formulas are
equivalent i� they have the same truth value for any
substitution of the variables with numerals.

F (v1) expresses the set of numbers A i�

F (n̄) is true ↔ n ∈ A
The regular formula F (v1, v2, . . . vn) expresses the relation (set
of n-tuples of numbers) R i�

F (k̄1, k̄2, . . . k̄n) is true ↔ R(k1, k2, . . . kn)

A set or relation of natural numbers is Arithmetic i� it can be
expressed by a regular formula of LE .

It is arithmetic i� the expressing formula does not contain E.

A function f with n variables is Arithmetic i� the corresponding
n+ 1-ary relation is Arithmetic.

András Máté Gödel 1st March



arithmetic and Arithmetic sets and relations

Two sentences are called (arithmetically) equivalent i� they
have the same truth-value. n-variable open formulas are
equivalent i� they have the same truth value for any
substitution of the variables with numerals.

F (v1) expresses the set of numbers A i�

F (n̄) is true ↔ n ∈ A
The regular formula F (v1, v2, . . . vn) expresses the relation (set
of n-tuples of numbers) R i�

F (k̄1, k̄2, . . . k̄n) is true ↔ R(k1, k2, . . . kn)

A set or relation of natural numbers is Arithmetic i� it can be
expressed by a regular formula of LE .

It is arithmetic i� the expressing formula does not contain E.

A function f with n variables is Arithmetic i� the corresponding
n+ 1-ary relation is Arithmetic.

András Máté Gödel 1st March



arithmetic and Arithmetic sets and relations

Two sentences are called (arithmetically) equivalent i� they
have the same truth-value. n-variable open formulas are
equivalent i� they have the same truth value for any
substitution of the variables with numerals.

F (v1) expresses the set of numbers A i�

F (n̄) is true ↔ n ∈ A
The regular formula F (v1, v2, . . . vn) expresses the relation (set
of n-tuples of numbers) R i�

F (k̄1, k̄2, . . . k̄n) is true ↔ R(k1, k2, . . . kn)

A set or relation of natural numbers is Arithmetic i� it can be
expressed by a regular formula of LE .

It is arithmetic i� the expressing formula does not contain E.

A function f with n variables is Arithmetic i� the corresponding
n+ 1-ary relation is Arithmetic.

András Máté Gödel 1st March



arithmetic and Arithmetic sets and relations

Two sentences are called (arithmetically) equivalent i� they
have the same truth-value. n-variable open formulas are
equivalent i� they have the same truth value for any
substitution of the variables with numerals.

F (v1) expresses the set of numbers A i�

F (n̄) is true ↔ n ∈ A
The regular formula F (v1, v2, . . . vn) expresses the relation (set
of n-tuples of numbers) R i�

F (k̄1, k̄2, . . . k̄n) is true ↔ R(k1, k2, . . . kn)

A set or relation of natural numbers is Arithmetic i� it can be
expressed by a regular formula of LE .

It is arithmetic i� the expressing formula does not contain E.

A function f with n variables is Arithmetic i� the corresponding
n+ 1-ary relation is Arithmetic.

András Máté Gödel 1st March



Exercises for homework

1 Show that the relation 'x divides y' is arithmetic.

2 The set of prime numbers is arithmetic.

3 If f and A are Arithmetic/arithmetic, then f−1(A) is
Arithmetic/arithmetic, too.

4 The composition of two one-variable Arithmetic functions is
Arithmetic.

5 If A is an in�nite Arithmetic set, then the relation R(x, y)
which holds i� x is the smallest element of A larger than y
is Arithmetic.
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Concatenation

Concatenation of two strings x, y: write down x, and then y.
You get a string beginning with the �rst character of x and
ending with the last character of y.

Concatenation of two numbers x, y to the base b: write down the
two numbers after each other in the b-based numeral system. (In
other words: concatenate the numerals [as strings of digits]
denoting them in the b-ary system.) You get a b-ary numeral.
The concatenation of x and y will be the number denoted by
this numeral. Notation:

x ∗b y

Decimal case:
m ∗10 n = m · 10l(n) + n

where l(n) is the length of n (in the decimal system).
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Concatenation (continuation)

In general, lb(n) is the length of (the numeral denoting) n in the
b-based numeral system and

m ∗b n = m · blb(n) + n

Proposition: The relation x ∗b y = z is Arithmetic (for any b).

1 blb(n) is the smallest power of b which is larger than n.

2 The property Powb(x)↔ ∃y((x = by)) is Arithmetic.

3 The relation s(x, y) meaning `y is the smallest power of b
which is larger than x' is Arithmetic:

s(x, y)↔ Powb(y)∧x < y ∧∀z((Powb(z)∧x < z)→ y ≤ z)

4 blb(x) = y ↔ (x = 0∧y = b)∨ (x 6= 0∧ s(x, y)) is Arithmetic.

5 x ∗b y = z ↔ x · blb(y) + y = z ↔
∃z1∃z2(blb(y) = z1 ∧ x · z1 = z2 ∧ z2 + y = z)
is Arithmetic, q.e.d.
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Concatenation of more than two numbers

If y 6= 0, then (x ∗b y) ∗b z = x ∗b (y ∗b z). But if y = 0, then e.g
(5 ∗10 0) ∗10 3 = 503, but 5 ∗10 (0 ∗10 3) = 53. Therefore,
concatenation is not generally associative.

Convention: We read x1 ∗b x2 ∗b . . . ∗b xn as bracketed from the
left.

Corollary of the previous proposition: The relation

x1 ∗b x2 ∗b . . . ∗b xn = y

is Arithmetic (for any b and any n ≥ 2).

Proof: by induction on n ≥ 2.
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Gödel numbering

Gödel numbering: Injective mapping from strings to numbers.
The method to translate metalanguage into object language.

Injective: the string can be read back from its Gödel number.

Usual method uses the uniqueness of prime factorization.

Idea (Quine): let's use the uniqueness of b-based numeral.
Smullyan: it is an advantage if b is a prime.

Gödel numbers of the letters:

0 ′ ( ) f ′ v ¬ → ∀ = ≤ ]
1 0 2 3 4 5 6 7 8 9 η ε δ

where η, ε, δ are 13-ary digits having the value 10, 11, 12.
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Gödel number of an arbitrary expression

Expressions are the strings not beginning with ′ plus the
one-member string ′.

Gödel-number of an expression E is the number denoted by the
13-ary numeral that we get by substituting each character of E
with its Gödel number.

This is a bijective Gödel numbering. Further conditions for
Gödel numberings in general:

The Gödel number of the concatenation of the strings X
and Y be an Arithmetic function of the Gödel numbers of
X and Y .

The Gödel number of the numeral n̄ be an Arithmetic
function of n.

For the �rst condition, see Proposition.

For the second: the Gödel number of n̄ (0 followed by n strokes
is 10 . . . 013 (where the number of 0-s is n), i.e. 13n.
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Diagonalization and Gödel sentences

Our goal: to show that every Arithmetic set has a Gödel
sentence.

LE expressions: strings not beginning with ′ plus the
one-member string ′ .

LE sentences: according to the syntax of �rst-order logic.

LE predicates: open formulas with the single free variable v1:
F (v1).

Application of an expression E to a number n: a plausible idea
would be F (n̄) if E is F (v1). But:

1 It is not de�ned for every expression.
2 We would need to arithmetize the function sub(x, y) giving

the Gödel number of F (ȳ) if x is the Gödel number of
F (v1).

Let us use ∀v1(v1 = n̄→ F (v1)) instead of F (n̄). Short: F [n̄]

For any expression E, ∀v1(v1 = n̄→ E) is an expression E[n̄] �
this is how our application function (Φ) is given.
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The representation function and the diagonal function

The representation function of LE is the function r(x, y) which
gives the Gödel number of Ex[ȳ].

Proposition: The representation function is Arithmetic.

Proof: Let us calculate the Gödel number of Ex[ȳ].

∀v1(v1 = ȳ → Ex )
k 13y 8 x 3

Therefore, r(x, y) = z i� z = k ∗ 13y ∗ 8 ∗ x ∗ 3. (k is a particular
number, you can calculate it.)

The diagonal function of LE is d(x) = r(x, x). d(n) is the Gödel
number of En[n̄].

Lemma: If A is Arithmetic, then A∗ = d−1(A) is Arithmetic,
too.

Let D(v1, v2) express the function d, F (v1) express the set A.
Then ∃v2(D(v1, v2) ∧ F (v2)) expresses A

∗.
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∀v1(v1 = ȳ → Ex )
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Tarski's theorem

Theorem: Every Arithmetic set A has a Gödel sentence.

Let H(v1) express A
∗ and h its Gödel number.

H(h̄) is true ↔ h ∈ A∗ ←→ d(h) ∈ A

But d(h) is the Gödel number of H(h̄), therefore H(h̄) is a
Gödel sentence for A.

Tarski's theorem: The set of the Gödel numbers of true
sentences T is not Arithmetic.

Let us suppose (indirect assumption) that F (v1) expresses T .
Then ¬F (v1) expresses T̃ . Hence, T̃ has a Gödel sentence G. G
is true i� its Gödel number is not in T i.e. i� it is false.
Contradiction. Therefore there cannot be such an F (v1), q.e.d.

András Máté Gödel 1st March



Tarski's theorem

Theorem: Every Arithmetic set A has a Gödel sentence.

Let H(v1) express A
∗ and h its Gödel number.

H(h̄) is true ↔ h ∈ A∗ ←→ d(h) ∈ A

But d(h) is the Gödel number of H(h̄), therefore H(h̄) is a
Gödel sentence for A.

Tarski's theorem: The set of the Gödel numbers of true
sentences T is not Arithmetic.

Let us suppose (indirect assumption) that F (v1) expresses T .
Then ¬F (v1) expresses T̃ . Hence, T̃ has a Gödel sentence G. G
is true i� its Gödel number is not in T i.e. i� it is false.
Contradiction. Therefore there cannot be such an F (v1), q.e.d.

András Máté Gödel 1st March



Tarski's theorem

Theorem: Every Arithmetic set A has a Gödel sentence.

Let H(v1) express A
∗ and h its Gödel number.

H(h̄) is true ↔ h ∈ A∗ ←→ d(h) ∈ A

But d(h) is the Gödel number of H(h̄), therefore H(h̄) is a
Gödel sentence for A.

Tarski's theorem: The set of the Gödel numbers of true
sentences T is not Arithmetic.

Let us suppose (indirect assumption) that F (v1) expresses T .
Then ¬F (v1) expresses T̃ . Hence, T̃ has a Gödel sentence G. G
is true i� its Gödel number is not in T i.e. i� it is false.
Contradiction. Therefore there cannot be such an F (v1), q.e.d.

András Máté Gödel 1st March



Tarski's theorem

Theorem: Every Arithmetic set A has a Gödel sentence.

Let H(v1) express A
∗ and h its Gödel number.

H(h̄) is true ↔ h ∈ A∗ ←→ d(h) ∈ A

But d(h) is the Gödel number of H(h̄), therefore H(h̄) is a
Gödel sentence for A.

Tarski's theorem: The set of the Gödel numbers of true
sentences T is not Arithmetic.

Let us suppose (indirect assumption) that F (v1) expresses T .
Then ¬F (v1) expresses T̃ . Hence, T̃ has a Gödel sentence G. G
is true i� its Gödel number is not in T i.e. i� it is false.
Contradiction. Therefore there cannot be such an F (v1), q.e.d.

András Máté Gödel 1st March



Tarski's theorem

Theorem: Every Arithmetic set A has a Gödel sentence.

Let H(v1) express A
∗ and h its Gödel number.

H(h̄) is true ↔ h ∈ A∗ ←→ d(h) ∈ A

But d(h) is the Gödel number of H(h̄), therefore H(h̄) is a
Gödel sentence for A.

Tarski's theorem: The set of the Gödel numbers of true
sentences T is not Arithmetic.

Let us suppose (indirect assumption) that F (v1) expresses T .
Then ¬F (v1) expresses T̃ . Hence, T̃ has a Gödel sentence G. G
is true i� its Gödel number is not in T i.e. i� it is false.
Contradiction. Therefore there cannot be such an F (v1), q.e.d.

András Máté Gödel 1st March



Excercises for homework

1 Let us work with 10-based Gödel numbering, let the Gödel
numbers of →, ∀, =, ≤, ] be the numbers 89, 899, 8999,
89999, 89999. Find a Gödel sentence for the set of even
numbers. Is this sentence true or not?

2 Find an Arithmetic function f s.t. if n is a Gödel number of
some formula F (v1), then f(n) is the Gödel number of
some Gödel sentence of the set expressed by F (v1).
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some formula F (v1), then f(n) is the Gödel number of
some Gödel sentence of the set expressed by F (v1).
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Axioms for Peano Arithmetic with Exponentiation (P.E.)

We use axiom schemes with metalanguage variables for object
language formulas, variables, expressions and terms.

I. Schemes for propositional logic

L1 (F → (G→ F ))

L2 ((F → (G→ H))→ ((F → G)→ (F → H)))

L3 ((¬F → ¬G)→ (G→ F ))

II.Schemes for FOL with identity

L4 (∀x(F → G)→ (∀xF → ∀xG))

L5 (F → ∀xF ) provided x has no occurrence in F .

L6 ∃x(x = t) provided x has no occurrence in t.

L7 (x = t→ (X1xX2 → X1tX2)), where X1 and X2 are
expressions s.t. X1xX2 is an atomic formula.
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Arithmetic axioms

III. Axioms for arithmetic operations

N1 (v′1 = v′2 → v1 = v2)

N2 ¬ 0̄ = v′1
N3 (v1 + 0̄) = v1

N4 (v1 + v′2) = (v1 + v2)
′

N5 v1 · 0̄ = 0̄

N6 (v1 · v′2) = ((v1 · v2) + v1)

N7 (v1 ≤ 0̄↔ v1 = 0̄)

N8 (v1 ≤ v′2 ↔ (v1 ≤ v2 ∨ v1 = v′2))

N9 (v1 ≤ v2 ∨ v2 ≤ v1)
N10 (v1E0̄) = 0̄′

N11 (v1Ev
′
2) = ((v1Ev2) · v1)
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Mathematical induction

IV. Axiom scheme for mathematical induction

N12 (F (0̄)→ (∀v1(F (v1)→ F [v′1])→ ∀v1F (v1))),
where

F (v1) is any formula;

F [v′1] is any formula of the form ∀x(x = v′1 → F ).
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Inference rules and proofs

Rule 1. (Modus Ponens) From F and F → G to G.

Rule 2. (Generalization) From F to ∀xF .
Proof is a �nite sequence of formulas where each member is

an axiom, or

a formula derived from two earlier formulas by Rule 1., or

a formula derived from an earlier formula by Rule 2.

A formula F is provable in P.E. i� there is a proof whose last
member is F .
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Begins with, ends with, is a part of

Remember: (number) concatenation to a base b is Arithmetic.

y begins with x in the b-based notation: the numeral denoting x
is an initial segment of the string denoting y. Notation: xBby.
No number begins with 0 (except of 0 itself).

y ends with x, xEby: x is a �nal segment of y.

x is a part of y, xPby: there is a number z s.t y ends with z, and
z begins with x.

The above three relations are Arithmetic.

xBby ↔ x = y∨(x 6= 0∧∃z ≤ y∃w ≤ y(Powb(w)∧(x·w)∗bz = y))

xEby ↔ x = y ∨ ∃z ≤ y(z ∗b x = y)

xPby ↔ ∃z ≤ y(zEby ∧ xBbz)
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Continuation of the auxiliary relations

In addition, the n+ 1-ary relation

x1 ∗b x2 ∗b . . . ∗b xnPby ↔ ∃z ≤ y(x1 ∗b x2 ∗b . . . ∗b xn = z) ∧ zPby

is Arithmetic, too.

Some simpli�cations of the notation:

We use only b = 13 and leave o� the subscript form the
relation symbols.

We write xy instead of x ∗13 y.
xP̃y instead of ¬xPy.
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