Tarski's theorem

András Máté

01.03.2024

arithmetic and Arithmetic sets and relations

arithmetic and Arithmetic sets and relations

Two sentences are called (arithmetically) equivalent iff they have the same truth-value. n-variable open formulas are equivalent iff they have the same truth value for any substitution of the variables with numerals.

arithmetic and Arithmetic sets and relations

Two sentences are called (arithmetically) equivalent iff they have the same truth-value. n-variable open formulas are equivalent iff they have the same truth value for any substitution of the variables with numerals.
$F\left(v_{1}\right)$ expresses the set of numbers A iff

$$
F(\bar{n}) \text { is true } \leftrightarrow n \in A
$$

Two sentences are called (arithmetically) equivalent iff they have the same truth-value. n-variable open formulas are equivalent iff they have the same truth value for any substitution of the variables with numerals.
$F\left(v_{1}\right)$ expresses the set of numbers A iff

$$
F(\bar{n}) \text { is true } \leftrightarrow n \in A
$$

The regular formula $F\left(v_{1}, v_{2}, \ldots v_{n}\right)$ expresses the relation (set of n-tuples of numbers) R iff

$$
F\left(\bar{k}_{1}, \bar{k}_{2}, \ldots \bar{k}_{n}\right) \text { is true } \leftrightarrow R\left(k_{1}, k_{2}, \ldots k_{n}\right)
$$

Two sentences are called (arithmetically) equivalent iff they have the same truth-value. n-variable open formulas are equivalent iff they have the same truth value for any substitution of the variables with numerals.
$F\left(v_{1}\right)$ expresses the set of numbers A iff

$$
F(\bar{n}) \text { is true } \leftrightarrow n \in A
$$

The regular formula $F\left(v_{1}, v_{2}, \ldots v_{n}\right)$ expresses the relation (set of n-tuples of numbers) R iff

$$
F\left(\bar{k}_{1}, \bar{k}_{2}, \ldots \bar{k}_{n}\right) \text { is true } \leftrightarrow R\left(k_{1}, k_{2}, \ldots k_{n}\right)
$$

A set or relation of natural numbers is Arithmetic iff it can be expressed by a regular formula of \mathcal{L}_{E}.

Two sentences are called (arithmetically) equivalent iff they have the same truth-value. n-variable open formulas are equivalent iff they have the same truth value for any substitution of the variables with numerals.
$F\left(v_{1}\right)$ expresses the set of numbers A iff

$$
F(\bar{n}) \text { is true } \leftrightarrow n \in A
$$

The regular formula $F\left(v_{1}, v_{2}, \ldots v_{n}\right)$ expresses the relation (set of n-tuples of numbers) R iff

$$
F\left(\bar{k}_{1}, \bar{k}_{2}, \ldots \bar{k}_{n}\right) \text { is true } \leftrightarrow R\left(k_{1}, k_{2}, \ldots k_{n}\right)
$$

A set or relation of natural numbers is Arithmetic iff it can be expressed by a regular formula of \mathcal{L}_{E}.

It is arithmetic iff the expressing formula does not contain \mathbf{E}.

arithmetic and Arithmetic sets and relations

Two sentences are called (arithmetically) equivalent iff they have the same truth-value. n-variable open formulas are equivalent iff they have the same truth value for any substitution of the variables with numerals.
$F\left(v_{1}\right)$ expresses the set of numbers A iff

$$
F(\bar{n}) \text { is true } \leftrightarrow n \in A
$$

The regular formula $F\left(v_{1}, v_{2}, \ldots v_{n}\right)$ expresses the relation (set of n-tuples of numbers) R iff

$$
F\left(\bar{k}_{1}, \bar{k}_{2}, \ldots \bar{k}_{n}\right) \text { is true } \leftrightarrow R\left(k_{1}, k_{2}, \ldots k_{n}\right)
$$

A set or relation of natural numbers is Arithmetic iff it can be expressed by a regular formula of \mathcal{L}_{E}.

It is arithmetic iff the expressing formula does not contain \mathbf{E}.
A function f with n variables is Arithmetic iff the corresponding $n+1$-ary relation is Arithmetic.

Exercises for homework

Exercises for homework

(1) Show that the relation ' x divides y ' is arithmetic.

Exercises for homework

(1) Show that the relation ' x divides y ' is arithmetic.
(2) The set of prime numbers is arithmetic.
(1) Show that the relation ' x divides y ' is arithmetic.
(2) The set of prime numbers is arithmetic.
(3) If f and A are Arithmetic/arithmetic, then $f^{-1}(A)$ is Arithmetic/arithmetic, too.
(1) Show that the relation ' x divides y ' is arithmetic.
(2) The set of prime numbers is arithmetic.
(3) If f and A are Arithmetic/arithmetic, then $f^{-1}(A)$ is Arithmetic/arithmetic, too.
(1) The composition of two one-variable Arithmetic functions is Arithmetic.
(1) Show that the relation ' x divides y ' is arithmetic.
(2) The set of prime numbers is arithmetic.
(3) If f and A are Arithmetic/arithmetic, then $f^{-1}(A)$ is Arithmetic/arithmetic, too.
(1) The composition of two one-variable Arithmetic functions is Arithmetic.
(0) If A is an infinite Arithmetic set, then the relation $R(x, y)$ which holds iff x is the smallest element of A larger than y is Arithmetic.

Concatenation

Concatenation

Concatenation of two strings x, y : write down x, and then y. You get a string beginning with the first character of x and ending with the last character of y.

Concatenation

Concatenation of two strings x, y : write down x, and then y. You get a string beginning with the first character of x and ending with the last character of y.

Concatenation of two numbers x, y to the base b : write down the two numbers after each other in the b-based numeral system. (In other words: concatenate the numerals [as strings of digits] denoting them in the b-ary system.) You get a b-ary numeral. The concatenation of x and y will be the number denoted by this numeral. Notation:

$$
x *_{b} y
$$

Concatenation of two strings x, y : write down x, and then y. You get a string beginning with the first character of x and ending with the last character of y.

Concatenation of two numbers x, y to the base b : write down the two numbers after each other in the b-based numeral system. (In other words: concatenate the numerals [as strings of digits] denoting them in the b-ary system.) You get a b-ary numeral. The concatenation of x and y will be the number denoted by this numeral. Notation:

$$
x *_{b} y
$$

Decimal case:

$$
m *_{10} n=m \cdot 10^{l(n)}+n
$$

where $l(n)$ is the length of n (in the decimal system).

Concatenation (continuation)

Concatenation (continuation)

In general, $l_{b}(n)$ is the length of (the numeral denoting) n in the b-based numeral system and

$$
m *_{b} n=m \cdot b^{l_{b}(n)}+n
$$

Concatenation (continuation)

In general, $l_{b}(n)$ is the length of (the numeral denoting) n in the b-based numeral system and

$$
m *_{b} n=m \cdot b^{l_{b}(n)}+n
$$

Proposition: The relation $x *_{b} y=z$ is Arithmetic (for any b).

Concatenation (continuation)

In general, $l_{b}(n)$ is the length of (the numeral denoting) n in the b-based numeral system and

$$
m *_{b} n=m \cdot b^{l_{b}(n)}+n
$$

Proposition: The relation $x *_{b} y=z$ is Arithmetic (for any b).
(1) $b^{l_{b}(n)}$ is the smallest power of b which is larger than n.

Concatenation (continuation)

In general, $l_{b}(n)$ is the length of (the numeral denoting) n in the b-based numeral system and

$$
m *_{b} n=m \cdot b^{l_{b}(n)}+n
$$

Proposition: The relation $x *_{b} y=z$ is Arithmetic (for any b).
(1) $b^{l_{b}(n)}$ is the smallest power of b which is larger than n.
(2) The property $\operatorname{Pow}_{b}(x) \leftrightarrow \exists y\left(\left(x=b^{y}\right)\right)$ is Arithmetic.

Concatenation (continuation)

In general, $l_{b}(n)$ is the length of (the numeral denoting) n in the b-based numeral system and

$$
m *_{b} n=m \cdot b^{l_{b}(n)}+n
$$

Proposition: The relation $x *_{b} y=z$ is Arithmetic (for any b).
(1) $b^{l_{b}(n)}$ is the smallest power of b which is larger than n.
(2) The property $\operatorname{Pow}_{b}(x) \leftrightarrow \exists y\left(\left(x=b^{y}\right)\right)$ is Arithmetic.
(3) The relation $s(x, y)$ meaning ' y is the smallest power of b which is larger than x ' is Arithmetic:
$s(x, y) \leftrightarrow \operatorname{Pow}_{b}(y) \wedge x<y \wedge \forall z\left(\left(\operatorname{Pow}_{b}(z) \wedge x<z\right) \rightarrow y \leq z\right)$

Concatenation (continuation)

In general, $l_{b}(n)$ is the length of (the numeral denoting) n in the b-based numeral system and

$$
m *_{b} n=m \cdot b^{l_{b}(n)}+n
$$

Proposition: The relation $x *_{b} y=z$ is Arithmetic (for any b).
(1) $b^{l_{b}(n)}$ is the smallest power of b which is larger than n.
(2) The property $\operatorname{Pow}_{b}(x) \leftrightarrow \exists y\left(\left(x=b^{y}\right)\right)$ is Arithmetic.
(3) The relation $s(x, y)$ meaning ' y is the smallest power of b which is larger than x is Arithmetic:
$s(x, y) \leftrightarrow \operatorname{Pow}_{b}(y) \wedge x<y \wedge \forall z\left(\left(\operatorname{Pow}_{b}(z) \wedge x<z\right) \rightarrow y \leq z\right)$
(1) $b^{l_{b}(x)}=y \leftrightarrow(x=0 \wedge y=b) \vee(x \neq 0 \wedge s(x, y))$ is Arithmetic.

Concatenation (continuation)

In general, $l_{b}(n)$ is the length of (the numeral denoting) n in the b-based numeral system and

$$
m *_{b} n=m \cdot b^{l_{b}(n)}+n
$$

Proposition: The relation $x *_{b} y=z$ is Arithmetic (for any b).
(1) $b^{l_{b}(n)}$ is the smallest power of b which is larger than n.
(2) The property $\operatorname{Pow}_{b}(x) \leftrightarrow \exists y\left(\left(x=b^{y}\right)\right)$ is Arithmetic.
(3) The relation $s(x, y)$ meaning ' y is the smallest power of b which is larger than x ' is Arithmetic:
$s(x, y) \leftrightarrow \operatorname{Pow}_{b}(y) \wedge x<y \wedge \forall z\left(\left(\operatorname{Pow}_{b}(z) \wedge x<z\right) \rightarrow y \leq z\right)$
(1) $b^{l_{b}(x)}=y \leftrightarrow(x=0 \wedge y=b) \vee(x \neq 0 \wedge s(x, y))$ is Arithmetic.
(0) $x *_{b} y=z \leftrightarrow x \cdot b^{l_{b}(y)}+y=z \leftrightarrow$ $\exists z_{1} \exists z_{2}\left(b^{l_{b}(y)}=z_{1} \wedge x \cdot z_{1}=z_{2} \wedge z_{2}+y=z\right)$ is Arithmetic, q.e.d.

Concatenation of more than two numbers

Concatenation of more than two numbers

If $y \neq 0$, then $\left(x *_{b} y\right) *_{b} z=x *_{b}\left(y *_{b} z\right)$. But if $y=0$, then e.g $\left(5 *_{10} 0\right) *_{10} 3=503$, but $5 *_{10}\left(0 *_{10} 3\right)=53$. Therefore, concatenation is not generally associative.

Concatenation of more than two numbers

If $y \neq 0$, then $\left(x *_{b} y\right) *_{b} z=x *_{b}\left(y *_{b} z\right)$. But if $y=0$, then e.g $\left(5 *_{10} 0\right) *_{10} 3=503$, but $5 *_{10}\left(0 *_{10} 3\right)=53$. Therefore, concatenation is not generally associative.

Convention: We read $x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n}$ as bracketed from the left.

If $y \neq 0$, then $\left(x *_{b} y\right) *_{b} z=x *_{b}\left(y *_{b} z\right)$. But if $y=0$, then e.g $\left(5 *_{10} 0\right) *_{10} 3=503$, but $5 *_{10}\left(0 *_{10} 3\right)=53$. Therefore, concatenation is not generally associative.

Convention: We read $x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n}$ as bracketed from the left.

Corollary of the previous proposition: The relation

$$
x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n}=y
$$

is Arithmetic (for any b and any $n \geq 2$).

If $y \neq 0$, then $\left(x *_{b} y\right) *_{b} z=x *_{b}\left(y *_{b} z\right)$. But if $y=0$, then e.g $\left(5 *_{10} 0\right) *_{10} 3=503$, but $5 *_{10}\left(0 *_{10} 3\right)=53$. Therefore, concatenation is not generally associative.

Convention: We read $x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n}$ as bracketed from the left.

Corollary of the previous proposition: The relation

$$
x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n}=y
$$

is Arithmetic (for any b and any $n \geq 2$).
Proof: by induction on $n \geq 2$.

Gödel numbering

Gödel numbering

Gödel numbering: Injective mapping from strings to numbers. The method to translate metalanguage into object language.

Gödel numbering

Gödel numbering: Injective mapping from strings to numbers. The method to translate metalanguage into object language.

Injective: the string can be read back from its Gödel number.

Gödel numbering

Gödel numbering: Injective mapping from strings to numbers. The method to translate metalanguage into object language.

Injective: the string can be read back from its Gödel number.
Usual method uses the uniqueness of prime factorization.

Gödel numbering

Gödel numbering: Injective mapping from strings to numbers. The method to translate metalanguage into object language.

Injective: the string can be read back from its Gödel number.
Usual method uses the uniqueness of prime factorization.
Idea (Quine): let's use the uniqueness of b-based numeral. Smullyan: it is an advantage if b is a prime.

Gödel numbering

Gödel numbering: Injective mapping from strings to numbers. The method to translate metalanguage into object language.

Injective: the string can be read back from its Gödel number.
Usual method uses the uniqueness of prime factorization.
Idea (Quine): let's use the uniqueness of b-based numeral. Smullyan: it is an advantage if b is a prime.

Gödel numbers of the letters:

$$
\begin{array}{ccccccccccccc}
0 & \prime & (&) & f & , & v & \neg & \rightarrow & \forall & = & \leq & \sharp \\
1 & 0 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \eta & \varepsilon & \delta
\end{array}
$$

where $\eta, \varepsilon, \delta$ are 13 -ary digits having the value $10,11,12$.

Gödel number of an arbitrary expression

Gödel number of an arbitrary expression

Expressions are the strings not beginning with ' plus the one-member string ${ }^{\prime}$.

Gödel number of an arbitrary expression

Expressions are the strings not beginning with ' plus the one-member string '.

Gödel-number of an expression E is the number denoted by the 13 -ary numeral that we get by substituting each character of E with its Gödel number.

Gödel number of an arbitrary expression

Expressions are the strings not beginning with ' plus the one-member string ${ }^{\prime}$.

Gödel-number of an expression E is the number denoted by the 13 -ary numeral that we get by substituting each character of E with its Gödel number.

This is a bijective Gödel numbering. Further conditions for Gödel numberings in general:

Gödel number of an arbitrary expression

Expressions are the strings not beginning with ' plus the one-member string ${ }^{\prime}$.

Gödel-number of an expression E is the number denoted by the 13 -ary numeral that we get by substituting each character of E with its Gödel number.

This is a bijective Gödel numbering. Further conditions for Gödel numberings in general:

- The Gödel number of the concatenation of the strings X and Y be an Arithmetic function of the Gödel numbers of X and Y.

Gödel number of an arbitrary expression

Expressions are the strings not beginning with ' plus the one-member string ${ }^{\prime}$.

Gödel-number of an expression E is the number denoted by the 13 -ary numeral that we get by substituting each character of E with its Gödel number.

This is a bijective Gödel numbering. Further conditions for Gödel numberings in general:

- The Gödel number of the concatenation of the strings X and Y be an Arithmetic function of the Gödel numbers of X and Y.
- The Gödel number of the numeral \bar{n} be an Arithmetic function of n.

Gödel number of an arbitrary expression

Expressions are the strings not beginning with ' plus the one-member string ${ }^{\prime}$.

Gödel-number of an expression E is the number denoted by the 13 -ary numeral that we get by substituting each character of E with its Gödel number.

This is a bijective Gödel numbering. Further conditions for Gödel numberings in general:

- The Gödel number of the concatenation of the strings X and Y be an Arithmetic function of the Gödel numbers of X and Y.
- The Gödel number of the numeral \bar{n} be an Arithmetic function of n.

For the first condition, see Proposition.

Gödel number of an arbitrary expression

Expressions are the strings not beginning with ' plus the one-member string ${ }^{\prime}$.

Gödel-number of an expression E is the number denoted by the 13 -ary numeral that we get by substituting each character of E with its Gödel number.

This is a bijective Gödel numbering. Further conditions for Gödel numberings in general:

- The Gödel number of the concatenation of the strings X and Y be an Arithmetic function of the Gödel numbers of X and Y.
- The Gödel number of the numeral \bar{n} be an Arithmetic function of n.
For the first condition, see Proposition.
For the second: the Gödel number of \bar{n} (0 followed by n strokes is $10 \ldots 0_{13}$ (where the number of 0 -s is n), i.e, 13^{n}.

Diagonalization and Gödel sentences

Diagonalization and Gödel sentences

Our goal: to show that every Arithmetic set has a Gödel sentence.

Diagonalization and Gödel sentences

Our goal: to show that every Arithmetic set has a Gödel sentence.
\mathcal{L}_{E} expressions: strings not beginning with ' plus the one-member string ' .

Diagonalization and Gödel sentences

Our goal: to show that every Arithmetic set has a Gödel sentence.
\mathcal{L}_{E} expressions: strings not beginning with ' plus the one-member string ' .
\mathcal{L}_{E} sentences: according to the syntax of first-order logic.

Diagonalization and Gödel sentences

Our goal: to show that every Arithmetic set has a Gödel sentence.
\mathcal{L}_{E} expressions: strings not beginning with ' plus the one-member string ' .
\mathcal{L}_{E} sentences: according to the syntax of first-order logic.
\mathcal{L}_{E} predicates: open formulas with the single free variable v_{1} : $F\left(v_{1}\right)$.

Diagonalization and Gödel sentences

Our goal: to show that every Arithmetic set has a Gödel sentence.
\mathcal{L}_{E} expressions: strings not beginning with ' plus the one-member string ' .
\mathcal{L}_{E} sentences: according to the syntax of first-order logic.
\mathcal{L}_{E} predicates: open formulas with the single free variable v_{1} : $F\left(v_{1}\right)$.
Application of an expression E to a number n : a plausible idea would be $F(\bar{n})$ if E is $F\left(v_{1}\right)$. But:

Diagonalization and Gödel sentences

Our goal: to show that every Arithmetic set has a Gödel sentence.
\mathcal{L}_{E} expressions: strings not beginning with ' plus the one-member string ' .
\mathcal{L}_{E} sentences: according to the syntax of first-order logic.
\mathcal{L}_{E} predicates: open formulas with the single free variable v_{1} : $F\left(v_{1}\right)$.
Application of an expression E to a number n : a plausible idea would be $F(\bar{n})$ if E is $F\left(v_{1}\right)$. But:
(1) It is not defined for every expression.

Diagonalization and Gödel sentences

Our goal: to show that every Arithmetic set has a Gödel sentence.
\mathcal{L}_{E} expressions: strings not beginning with ' plus the one-member string ' .
\mathcal{L}_{E} sentences: according to the syntax of first-order logic.
\mathcal{L}_{E} predicates: open formulas with the single free variable v_{1} : $F\left(v_{1}\right)$.
Application of an expression E to a number n : a plausible idea would be $F(\bar{n})$ if E is $F\left(v_{1}\right)$. But:
(1) It is not defined for every expression.
(2) We would need to arithmetize the function $\operatorname{sub}(x, y)$ giving the Gödel number of $F(\bar{y})$ if x is the Gödel number of $F\left(v_{1}\right)$.

Diagonalization and Gödel sentences

Our goal: to show that every Arithmetic set has a Gödel sentence.
\mathcal{L}_{E} expressions: strings not beginning with ' plus the one-member string ' .
\mathcal{L}_{E} sentences: according to the syntax of first-order logic.
\mathcal{L}_{E} predicates: open formulas with the single free variable v_{1} : $F\left(v_{1}\right)$.
Application of an expression E to a number n : a plausible idea would be $F(\bar{n})$ if E is $F\left(v_{1}\right)$. But:
(1) It is not defined for every expression.
(2) We would need to arithmetize the function $\operatorname{sub}(x, y)$ giving the Gödel number of $F(\bar{y})$ if x is the Gödel number of $F\left(v_{1}\right)$.
Let us use $\forall v_{1}\left(v_{1}=\bar{n} \rightarrow F\left(v_{1}\right)\right)$ instead of $F(\bar{n})$. Short: $F[\bar{n}]$

Diagonalization and Gödel sentences

Our goal: to show that every Arithmetic set has a Gödel sentence.
\mathcal{L}_{E} expressions: strings not beginning with ' plus the one-member string ' .
\mathcal{L}_{E} sentences: according to the syntax of first-order logic.
\mathcal{L}_{E} predicates: open formulas with the single free variable v_{1} : $F\left(v_{1}\right)$.
Application of an expression E to a number n : a plausible idea would be $F(\bar{n})$ if E is $F\left(v_{1}\right)$. But:
(1) It is not defined for every expression.
(2) We would need to arithmetize the function $\operatorname{sub}(x, y)$ giving the Gödel number of $F(\bar{y})$ if x is the Gödel number of $F\left(v_{1}\right)$.
Let us use $\forall v_{1}\left(v_{1}=\bar{n} \rightarrow F\left(v_{1}\right)\right)$ instead of $F(\bar{n})$. Short: $F[\bar{n}]$
For any expression $E, \forall v_{1}\left(v_{1}=\bar{n} \rightarrow E\right)$ is an expression $E[\bar{n}]-$ this is how our application function (Φ) is given.

The representation function and the diagonal function

The representation function and the diagonal function

The representation function of \mathcal{L}_{E} is the function $r(x, y)$ which gives the Gödel number of $E_{x}[\bar{y}]$.

The representation function and the diagonal function

The representation function of \mathcal{L}_{E} is the function $r(x, y)$ which gives the Gödel number of $E_{x}[\bar{y}]$.

Proposition: The representation function is Arithmetic.

The representation function and the diagonal function

The representation function of \mathcal{L}_{E} is the function $r(x, y)$ which gives the Gödel number of $E_{x}[\bar{y}]$.

Proposition: The representation function is Arithmetic.
Proof: Let us calculate the Gödel number of $E_{x}[\bar{y}]$.

$$
\begin{array}{ccccc}
\forall v_{1}\left(v_{1}=\right. & \bar{y} & \rightarrow & E_{x} &) \\
k & 13^{y} & 8 & x & 3
\end{array}
$$

The representation function and the diagonal function

The representation function of \mathcal{L}_{E} is the function $r(x, y)$ which gives the Gödel number of $E_{x}[\bar{y}]$.

Proposition: The representation function is Arithmetic.
Proof: Let us calculate the Gödel number of $E_{x}[\bar{y}]$.

$$
\begin{array}{ccccc}
\forall v_{1}\left(v_{1}=\right. & \bar{y} & \rightarrow & E_{x} &) \\
k & 13^{y} & 8 & x & 3
\end{array}
$$

Therefore, $r(x, y)=z$ iff $z=k * 13^{y} * 8 * x * 3$. (k is a particular number, you can calculate it.)

The diagonal function of \mathcal{L}_{E} is $d(x)=r(x, x) . d(n)$ is the Gödel number of $E_{n}[\bar{n}]$.

The representation function and the diagonal function

The representation function of \mathcal{L}_{E} is the function $r(x, y)$ which gives the Gödel number of $E_{x}[\bar{y}]$.

Proposition: The representation function is Arithmetic.
Proof: Let us calculate the Gödel number of $E_{x}[\bar{y}]$.

$$
\begin{array}{ccccc}
\forall v_{1}\left(v_{1}=\right. & \bar{y} & \rightarrow & E_{x} &) \\
k & 13^{y} & 8 & x & 3
\end{array}
$$

Therefore, $r(x, y)=z$ iff $z=k * 13^{y} * 8 * x * 3$. (k is a particular number, you can calculate it.)

The diagonal function of \mathcal{L}_{E} is $d(x)=r(x, x) . d(n)$ is the Gödel number of $E_{n}[\bar{n}]$.

Lemma: If A is Arithmetic, then $A^{*}=d^{-1}(A)$ is Arithmetic, too.

The representation function and the diagonal function

The representation function of \mathcal{L}_{E} is the function $r(x, y)$ which gives the Gödel number of $E_{x}[\bar{y}]$.

Proposition: The representation function is Arithmetic.
Proof: Let us calculate the Gödel number of $E_{x}[\bar{y}]$.

$$
\begin{array}{ccccc}
\forall v_{1}\left(v_{1}=\right. & \bar{y} & \rightarrow & E_{x} &) \\
k & 13^{y} & 8 & x & 3
\end{array}
$$

Therefore, $r(x, y)=z$ iff $z=k * 13^{y} * 8 * x * 3$. (k is a particular number, you can calculate it.)

The diagonal function of \mathcal{L}_{E} is $d(x)=r(x, x) . d(n)$ is the Gödel number of $E_{n}[\bar{n}]$.

Lemma: If A is Arithmetic, then $A^{*}=d^{-1}(A)$ is Arithmetic, too.

Let $D\left(v_{1}, v_{2}\right)$ express the function $d, F\left(v_{1}\right)$ express the set A. Then $\exists v_{2}\left(D\left(v_{1}, v_{2}\right) \wedge F\left(v_{2}\right)\right)$ expresses A^{*}.

Tarski's theorem

Tarski's theorem

Theorem: Every Arithmetic set A has a Gödel sentence.

Tarski's theorem

Theorem: Every Arithmetic set A has a Gödel sentence.
Let $H\left(v_{1}\right)$ express A^{*} and h its Gödel number.

$$
H(\bar{h}) \text { is true } \leftrightarrow h \in A^{*} \longleftrightarrow d(h) \in A
$$

But $d(h)$ is the Gödel number of $H(\bar{h})$, therefore $H(\bar{h})$ is a Gödel sentence for A.

Tarski's theorem

Theorem: Every Arithmetic set A has a Gödel sentence.
Let $H\left(v_{1}\right)$ express A^{*} and h its Gödel number.

$$
H(\bar{h}) \text { is true } \leftrightarrow h \in A^{*} \longleftrightarrow d(h) \in A
$$

But $d(h)$ is the Gödel number of $H(\bar{h})$, therefore $H(\bar{h})$ is a Gödel sentence for A.

Tarski's theorem: The set of the Gödel numbers of true sentences T is not Arithmetic.

Theorem: Every Arithmetic set A has a Gödel sentence.
Let $H\left(v_{1}\right)$ express A^{*} and h its Gödel number.

$$
H(\bar{h}) \text { is true } \leftrightarrow h \in A^{*} \longleftrightarrow d(h) \in A
$$

But $d(h)$ is the Gödel number of $H(\bar{h})$, therefore $H(\bar{h})$ is a Gödel sentence for A.

Tarski's theorem: The set of the Gödel numbers of true sentences T is not Arithmetic.

Let us suppose (indirect assumption) that $F\left(v_{1}\right)$ expresses T. Then $\neg F\left(v_{1}\right)$ expresses \tilde{T}. Hence, \tilde{T} has a Gödel sentence G. G is true iff its Gödel number is not in T i.e. iff it is false.
Contradiction. Therefore there cannot be such an $F\left(v_{1}\right)$, q.e.d.

Excercises for homework

(1) Let us work with 10-based Gödel numbering, let the Gödel numbers of $\rightarrow, \forall,=, \leq, \sharp$ be the numbers $89,899,8999$, 89999, 89999. Find a Gödel sentence for the set of even numbers. Is this sentence true or not?

Excercises for homework

(1) Let us work with 10-based Gödel numbering, let the Gödel numbers of $\rightarrow, \forall,=, \leq, \sharp$ be the numbers $89,899,8999$, 89999,89999 . Find a Gödel sentence for the set of even numbers. Is this sentence true or not?
(2) Find an Arithmetic function f s.t. if n is a Gödel number of some formula $F\left(v_{1}\right)$, then $f(n)$ is the Gödel number of some Gödel sentence of the set expressed by $F\left(v_{1}\right)$.

Axioms for Peano Arithmetic with Exponentiation (P.E.)

Axioms for Peano Arithmetic with Exponentiation (P.E.)

We use axiom schemes with metalanguage variables for object language formulas, variables, expressions and terms.

Axioms for Peano Arithmetic with Exponentiation (P.E.)

We use axiom schemes with metalanguage variables for object language formulas, variables, expressions and terms.
I. Schemes for propositional logic

Axioms for Peano Arithmetic with Exponentiation (P.E.)

We use axiom schemes with metalanguage variables for object language formulas, variables, expressions and terms.
I. Schemes for propositional logic

$$
\begin{aligned}
& L_{1} \quad(F \rightarrow(G \rightarrow F)) \\
& L_{2} \quad((F \rightarrow(G \rightarrow H)) \rightarrow((F \rightarrow G) \rightarrow(F \rightarrow H))) \\
& L_{3} \quad((\neg F \rightarrow \neg G) \rightarrow(G \rightarrow F))
\end{aligned}
$$

Axioms for Peano Arithmetic with Exponentiation (P.E.)

We use axiom schemes with metalanguage variables for object language formulas, variables, expressions and terms.
I. Schemes for propositional logic

$$
\begin{aligned}
& L_{1} \quad(F \rightarrow(G \rightarrow F)) \\
& L_{2} \quad((F \rightarrow(G \rightarrow H)) \rightarrow((F \rightarrow G) \rightarrow(F \rightarrow H))) \\
& L_{3} \quad((\neg F \rightarrow \neg G) \rightarrow(G \rightarrow F))
\end{aligned}
$$

II.Schemes for FOL with identity
$L_{4} \quad(\forall x(F \rightarrow G) \rightarrow(\forall x F \rightarrow \forall x G))$
$L_{5}(F \rightarrow \forall x F)$ provided x has no occurrence in F.

Axioms for Peano Arithmetic with Exponentiation (P.E.)

We use axiom schemes with metalanguage variables for object language formulas, variables, expressions and terms.
I. Schemes for propositional logic

$$
\begin{aligned}
& L_{1} \quad(F \rightarrow(G \rightarrow F)) \\
& L_{2} \quad((F \rightarrow(G \rightarrow H)) \rightarrow((F \rightarrow G) \rightarrow(F \rightarrow H))) \\
& L_{3} \quad((\neg F \rightarrow \neg G) \rightarrow(G \rightarrow F))
\end{aligned}
$$

II.Schemes for FOL with identity
$L_{4} \quad(\forall x(F \rightarrow G) \rightarrow(\forall x F \rightarrow \forall x G))$
$L_{5}(F \rightarrow \forall x F)$ provided x has no occurrence in F.
$L_{6} \exists x(x=t)$ provided x has no occurrence in t.
$L_{7}\left(x=t \rightarrow\left(X_{1} x X_{2} \rightarrow X_{1} t X_{2}\right)\right)$, where X_{1} and X_{2} are expressions s.t. $X_{1} x X_{2}$ is an atomic formula.

Arithmetic axioms

Arithmetic axioms

III. Axioms for arithmetic operations

Arithmetic axioms

III. Axioms for arithmetic operations

$$
\begin{aligned}
& N_{1} \quad\left(v_{1}^{\prime}=v_{2}^{\prime} \rightarrow v_{1}=v_{2}\right) \\
& N_{2} \neg \overline{0}=v_{1}^{\prime}
\end{aligned}
$$

Arithmetic axioms

III. Axioms for arithmetic operations
$N_{1}\left(v_{1}^{\prime}=v_{2}^{\prime} \rightarrow v_{1}=v_{2}\right)$
$N_{2} \neg \overline{0}=v_{1}^{\prime}$
$N_{3}\left(v_{1}+\overline{0}\right)=v_{1}$
$N_{4}\left(v_{1}+v_{2}^{\prime}\right)=\left(v_{1}+v_{2}\right)^{\prime}$

Arithmetic axioms

III. Axioms for arithmetic operations
$N_{1}\left(v_{1}^{\prime}=v_{2}^{\prime} \rightarrow v_{1}=v_{2}\right)$
$N_{2} \neg \overline{0}=v_{1}^{\prime}$
$N_{3}\left(v_{1}+\overline{0}\right)=v_{1}$
$N_{4}\left(v_{1}+v_{2}^{\prime}\right)=\left(v_{1}+v_{2}\right)^{\prime}$
$N_{5} v_{1} \cdot \overline{0}=\overline{0}$
$N_{6}\left(v_{1} \cdot v_{2}^{\prime}\right)=\left(\left(v_{1} \cdot v_{2}\right)+v_{1}\right)$

Arithmetic axioms

III. Axioms for arithmetic operations

$$
\begin{aligned}
& N_{1} \quad\left(v_{1}^{\prime}=v_{2}^{\prime} \rightarrow v_{1}=v_{2}\right) \\
& N_{2} \neg \overline{0}=v_{1}^{\prime} \\
& N_{3} \quad\left(v_{1}+\overline{0}\right)=v_{1} \\
& N_{4} \quad\left(v_{1}+v_{2}^{\prime}\right)=\left(v_{1}+v_{2}\right)^{\prime} \\
& N_{5} \quad v_{1} \cdot \overline{0}=\overline{0} \\
& N_{6}\left(v_{1} \cdot v_{2}^{\prime}\right)=\left(\left(v_{1} \cdot v_{2}\right)+v_{1}\right) \\
& N_{7}\left(v_{1} \leq \overline{0} \leftrightarrow v_{1}=\overline{0}\right) \\
& N_{8}\left(v_{1} \leq v_{2}^{\prime} \leftrightarrow\left(v_{1} \leq v_{2} \vee v_{1}=v_{2}^{\prime}\right)\right) \\
& N_{9}\left(v_{1} \leq v_{2} \vee v_{2} \leq v_{1}\right)
\end{aligned}
$$

Arithmetic axioms

III. Axioms for arithmetic operations

$$
\begin{aligned}
& N_{1}\left(v_{1}^{\prime}=v_{2}^{\prime} \rightarrow v_{1}=v_{2}\right) \\
& N_{2} \neg \overline{0}=v_{1}^{\prime} \\
& N_{3}\left(v_{1}+\overline{0}\right)=v_{1} \\
& N_{4}\left(v_{1}+v_{2}^{\prime}\right)=\left(v_{1}+v_{2}\right)^{\prime} \\
& N_{5} \\
& N_{1} \cdot \overline{0}=\overline{0} \\
& N_{7}\left(v_{1} \cdot v_{2}^{\prime}\right)=\left(\left(v_{1} \leq \overline{0} \leftrightarrow v_{2}\right)+v_{1}\right) \\
& N_{8}\left(v_{1} \leq v_{2}^{\prime} \leftrightarrow\left(v_{1} \leq v_{2} \vee v_{1}=v_{2}^{\prime}\right)\right) \\
& N_{9} \\
& N_{10} \\
& N_{11} \\
& \left.\left(v_{1} \leq v_{1} \vee v_{2} \mathbf{E} \overline{0}\right)=v_{2} \leq v_{1}\right) \\
& \left.\mathbf{0} v_{2}^{\prime}\right)=\left(\left(v_{1} \mathbf{E} v_{2}\right) \cdot v_{1}\right)
\end{aligned}
$$

Mathematical induction

Mathematical induction

IV. Axiom scheme for mathematical induction

Mathematical induction

IV. Axiom scheme for mathematical induction

$$
\begin{aligned}
& N_{12}\left(F(\overline{0}) \rightarrow\left(\forall v_{1}\left(F\left(v_{1}\right) \rightarrow F\left[v_{1}^{\prime}\right]\right) \rightarrow \forall v_{1} F\left(v_{1}\right)\right)\right), \\
& \quad \text { where }
\end{aligned}
$$

Mathematical induction

IV. Axiom scheme for mathematical induction

$$
\begin{array}{ll}
N_{12} & \left(F(\overline{0}) \rightarrow\left(\forall v_{1}\left(F\left(v_{1}\right) \rightarrow F\left[v_{1}^{\prime}\right]\right) \rightarrow \forall v_{1} F\left(v_{1}\right)\right)\right), \\
\text { where }
\end{array}
$$

- $F\left(v_{1}\right)$ is any formula;

Mathematical induction

IV. Axiom scheme for mathematical induction

$$
\begin{aligned}
& N_{12} \quad\left(F(\overline{0}) \rightarrow\left(\forall v_{1}\left(F\left(v_{1}\right) \rightarrow F\left[v_{1}^{\prime}\right]\right) \rightarrow \forall v_{1} F\left(v_{1}\right)\right)\right), \\
& \quad \text { where }
\end{aligned}
$$

- $F\left(v_{1}\right)$ is any formula;
- $F\left[v_{1}^{\prime}\right]$ is any formula of the form $\forall x\left(x=v_{1}^{\prime} \rightarrow F\right)$.

Inference rules and proofs

Inference rules and proofs

Rule 1. (Modus Ponens) From F and $F \rightarrow G$ to G.

Inference rules and proofs

Rule 1. (Modus Ponens) From F and $F \rightarrow G$ to G.
Rule 2. (Generalization) From F to $\forall x F$.

Inference rules and proofs

Rule 1. (Modus Ponens) From F and $F \rightarrow G$ to G.
Rule 2. (Generalization) From F to $\forall x F$.
Proof is a finite sequence of formulas where each member is

- an axiom, or
- a formula derived from two earlier formulas by Rule 1., or
- a formula derived from an earlier formula by Rule 2.

Inference rules and proofs

Rule 1. (Modus Ponens) From F and $F \rightarrow G$ to G.
Rule 2. (Generalization) From F to $\forall x F$.
Proof is a finite sequence of formulas where each member is

- an axiom, or
- a formula derived from two earlier formulas by Rule 1., or
- a formula derived from an earlier formula by Rule 2.

A formula F is provable in P.E. iff there is a proof whose last member is F.

Begins with, ends with, is a part of

Begins with, ends with, is a part of

Remember: (number) concatenation to a base b is Arithmetic.

Begins with, ends with, is a part of

Remember: (number) concatenation to a base b is Arithmetic. y begins with x in the b-based notation: the numeral denoting x is an initial segment of the string denoting y. Notation: $x B_{b} y$. No number begins with 0 (except of 0 itself).

Begins with, ends with, is a part of

Remember: (number) concatenation to a base b is Arithmetic. y begins with x in the b-based notation: the numeral denoting x is an initial segment of the string denoting y. Notation: $x B_{b} y$. No number begins with 0 (except of 0 itself).
y ends with $x, x E_{b} y: x$ is a final segment of y.

Begins with, ends with, is a part of

Remember: (number) concatenation to a base b is Arithmetic. y begins with x in the b-based notation: the numeral denoting x is an initial segment of the string denoting y. Notation: $x B_{b} y$. No number begins with 0 (except of 0 itself).
y ends with $x, x E_{b} y: x$ is a final segment of y.
x is a part of $y, x P_{b} y$: there is a number z s.t y ends with z, and z begins with x.

Begins with, ends with, is a part of

Remember: (number) concatenation to a base b is Arithmetic. y begins with x in the b-based notation: the numeral denoting x is an initial segment of the string denoting y. Notation: $x B_{b} y$. No number begins with 0 (except of 0 itself).
y ends with $x, x E_{b} y: x$ is a final segment of y.
x is a part of $y, x P_{b} y$: there is a number z s.t y ends with z, and z begins with x.

The above three relations are Arithmetic.

Begins with, ends with, is a part of

Remember: (number) concatenation to a base b is Arithmetic. y begins with x in the b-based notation: the numeral denoting x is an initial segment of the string denoting y. Notation: $x B_{b} y$. No number begins with 0 (except of 0 itself).
y ends with $x, x E_{b} y: x$ is a final segment of y.
x is a part of $y, x P_{b} y$: there is a number z s.t y ends with z, and z begins with x.

The above three relations are Arithmetic.
$x B_{b} y \leftrightarrow x=y \vee\left(x \neq 0 \wedge \exists z \leq y \exists w \leq y\left(\operatorname{Pow}_{b}(w) \wedge(x \cdot w) *_{b} z=y\right)\right)$

Begins with, ends with, is a part of

Remember: (number) concatenation to a base b is Arithmetic. y begins with x in the b-based notation: the numeral denoting x is an initial segment of the string denoting y. Notation: $x B_{b} y$. No number begins with 0 (except of 0 itself).
y ends with $x, x E_{b} y: x$ is a final segment of y.
x is a part of $y, x P_{b} y$: there is a number z s.t y ends with z, and z begins with x.

The above three relations are Arithmetic.

$$
\begin{gathered}
x B_{b} y \leftrightarrow x=y \vee\left(x \neq 0 \wedge \exists z \leq y \exists w \leq y\left(\operatorname{Pow}_{b}(w) \wedge(x \cdot w) *_{b} z=y\right)\right) \\
x E_{b} y \leftrightarrow x=y \vee \exists z \leq y\left(z *_{b} x=y\right)
\end{gathered}
$$

Begins with, ends with, is a part of

Remember: (number) concatenation to a base b is Arithmetic. y begins with x in the b-based notation: the numeral denoting x is an initial segment of the string denoting y. Notation: $x B_{b} y$. No number begins with 0 (except of 0 itself).
y ends with $x, x E_{b} y: x$ is a final segment of y.
x is a part of $y, x P_{b} y$: there is a number z s.t y ends with z, and z begins with x.

The above three relations are Arithmetic.

$$
\begin{gathered}
x B_{b} y \leftrightarrow x=y \vee\left(x \neq 0 \wedge \exists z \leq y \exists w \leq y\left(\operatorname{Pow}_{b}(w) \wedge(x \cdot w) *_{b} z=y\right)\right) \\
x E_{b} y \leftrightarrow x=y \vee \exists z \leq y\left(z *_{b} x=y\right) \\
x P_{b} y \leftrightarrow \exists z \leq y\left(z E_{b} y \wedge x B_{b} z\right)
\end{gathered}
$$

Continuation of the auxiliary relations

Continuation of the auxiliary relations

In addition, the $n+1$-ary relation
$x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n} P_{b} y \leftrightarrow \exists z \leq y\left(x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n}=z\right) \wedge z P_{b} y$
is Arithmetic, too.

Continuation of the auxiliary relations

In addition, the $n+1$-ary relation
$x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n} P_{b} y \leftrightarrow \exists z \leq y\left(x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n}=z\right) \wedge z P_{b} y$
is Arithmetic, too.
Some simplifications of the notation:

Continuation of the auxiliary relations

In addition, the $n+1$-ary relation
$x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n} P_{b} y \leftrightarrow \exists z \leq y\left(x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n}=z\right) \wedge z P_{b} y$
is Arithmetic, too.
Some simplifications of the notation:

- We use only $b=13$ and leave off the subscript form the relation symbols.

Continuation of the auxiliary relations

In addition, the $n+1$-ary relation
$x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n} P_{b} y \leftrightarrow \exists z \leq y\left(x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n}=z\right) \wedge z P_{b} y$
is Arithmetic, too.
Some simplifications of the notation:

- We use only $b=13$ and leave off the subscript form the relation symbols.
- We write $x y$ instead of $x *_{13} y$.

Continuation of the auxiliary relations

In addition, the $n+1$-ary relation
$x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n} P_{b} y \leftrightarrow \exists z \leq y\left(x_{1} *_{b} x_{2} *_{b} \ldots *_{b} x_{n}=z\right) \wedge z P_{b} y$
is Arithmetic, too.
Some simplifications of the notation:

- We use only $b=13$ and leave off the subscript form the relation symbols.
- We write $x y$ instead of $x *_{13} y$.
- $x \tilde{P} y$ instead of $\neg x P y$.

