Abstract Gödelian languages: continuation

András Máté

23.02.2024

An abstract Tarski-like theorem

An abstract Tarski-like theorem

Theorem T

i. \tilde{T}^{*} is not expressible.
ii. If G_{1} holds, then \tilde{T} is not expressible.
iii. If G_{1} and G_{2} holds, then T is not expressible.

An abstract Tarski-like theorem

Theorem T

i. \tilde{T}^{*} is not expressible.
ii. If G_{1} holds, then \tilde{T} is not expressible.
iii. If G_{1} and G_{2} holds, then T is not expressible.

Proof of i. by D: If it is expressible, then \tilde{T} has a Gödel sentence. This sentence belongs to \mathcal{T} iff its Gödel number belongs to \tilde{T}. I.e., it is true iff it is false.

An abstract Tarski-like theorem

Theorem T

i. \tilde{T}^{*} is not expressible.
ii. If G_{1} holds, then \tilde{T} is not expressible.
iii. If G_{1} and G_{2} holds, then T is not expressible.

Proof of i. by D: If it is expressible, then \tilde{T} has a Gödel sentence. This sentence belongs to \mathcal{T} iff its Gödel number belongs to \tilde{T}. I.e., it is true iff it is false.

Proofs of ii. and iii. by modus tollens from i. and the conditions.

Consistency, decidability and completeness

Consistency, decidability and completeness

\mathcal{L} is consistent iff \mathcal{P} and \mathcal{R} are disjoint; inconsistent otherwise.

Consistency, decidability and completeness

\mathcal{L} is consistent iff \mathcal{P} and \mathcal{R} are disjoint; inconsistent otherwise.
Correct systems are always consistent, but not the other way.

Consistency, decidability and completeness

\mathcal{L} is consistent iff \mathcal{P} and \mathcal{R} are disjoint; inconsistent otherwise.
Correct systems are always consistent, but not the other way.
Sentence S is decidable iff it is either provable or refutable; undecidable otherwise.

Consistency, decidability and completeness

\mathcal{L} is consistent iff \mathcal{P} and \mathcal{R} are disjoint; inconsistent otherwise.
Correct systems are always consistent, but not the other way.
Sentence S is decidable iff it is either provable or refutable; undecidable otherwise.
\mathcal{L} is complete iff every sentence is decidable; incomplete otherwise.

Two GT-like theorems

Two GT-like theorems

Theorem 1.
If \mathcal{L} is correct and \tilde{P}^{*} is expressible, then \mathcal{L} is incomplete.

Two GT-like theorems

Theorem 1.
If \mathcal{L} is correct and \tilde{P}^{*} is expressible, then \mathcal{L} is incomplete.
Theorem 1. ${ }^{\circ}$ (Dual of Theorem 1.)
If \mathcal{L} is correct and R^{*} is expressible, then \mathcal{L} is incomplete.

Two GT-like theorems

Theorem 1.
If \mathcal{L} is correct and \tilde{P}^{*} is expressible, then \mathcal{L} is incomplete.
Theorem 1. ${ }^{\circ}$ (Dual of Theorem 1.)
If \mathcal{L} is correct and R^{*} is expressible, then \mathcal{L} is incomplete.
Proof for Theorem 1. ${ }^{\circ}$:
If K_{k} expresses R^{*}, then $K_{k}(k)$ is true iff $k \in R^{*}$

Two GT-like theorems

Theorem 1.
If \mathcal{L} is correct and \tilde{P}^{*} is expressible, then \mathcal{L} is incomplete.
Theorem 1. ${ }^{\circ}$ (Dual of Theorem 1.)
If \mathcal{L} is correct and R^{*} is expressible, then \mathcal{L} is incomplete.
Proof for Theorem 1. ${ }^{\circ}$:
If K_{k} expresses R^{*}, then $K_{k}(k)$ is true iff $k \in R^{*}$ iff $d(k) \in R$

Two GT-like theorems

Theorem 1.
If \mathcal{L} is correct and \tilde{P}^{*} is expressible, then \mathcal{L} is incomplete.
Theorem 1. ${ }^{\circ}$ (Dual of Theorem 1.)
If \mathcal{L} is correct and R^{*} is expressible, then \mathcal{L} is incomplete.
Proof for Theorem 1. ${ }^{\circ}$:
If K_{k} expresses R^{*}, then $K_{k}(k)$ is true iff $k \in R^{*}$ iff $d(k) \in R$ But the Gödel-number of $K_{k}(k)$ is just $d(k)$.

Theorem 1.
If \mathcal{L} is correct and \tilde{P}^{*} is expressible, then \mathcal{L} is incomplete.
Theorem 1. ${ }^{\circ}$ (Dual of Theorem 1.)
If \mathcal{L} is correct and R^{*} is expressible, then \mathcal{L} is incomplete.
Proof for Theorem 1. ${ }^{\circ}$:
If K_{k} expresses R^{*}, then $K_{k}(k)$ is true iff $k \in R^{*}$ iff $d(k) \in R$
But the Gödel-number of $K_{k}(k)$ is just $d(k)$.
Therefore, $K_{k}(k)$ is true iff it is refutable.

Theorem 1.
If \mathcal{L} is correct and \tilde{P}^{*} is expressible, then \mathcal{L} is incomplete.
Theorem 1. ${ }^{\circ}$ (Dual of Theorem 1.)
If \mathcal{L} is correct and R^{*} is expressible, then \mathcal{L} is incomplete.
Proof for Theorem 1. ${ }^{\circ}$:
If K_{k} expresses R^{*}, then $K_{k}(k)$ is true iff $k \in R^{*}$ iff $d(k) \in R$
But the Gödel-number of $K_{k}(k)$ is just $d(k)$.
Therefore, $K_{k}(k)$ is true iff it is refutable. By correctness, it is false but not refutable.

Two GT-like theorems

Theorem 1.
If \mathcal{L} is correct and \tilde{P}^{*} is expressible, then \mathcal{L} is incomplete.
Theorem 1. ${ }^{\circ}$ (Dual of Theorem 1.)
If \mathcal{L} is correct and R^{*} is expressible, then \mathcal{L} is incomplete.
Proof for Theorem 1. ${ }^{\circ}$:
If K_{k} expresses R^{*}, then $K_{k}(k)$ is true iff $k \in R^{*}$ iff $d(k) \in R$
But the Gödel-number of $K_{k}(k)$ is just $d(k)$.
Therefore, $K_{k}(k)$ is true iff it is refutable. By correctness, it is false but not refutable.

Corollary: If G_{1} holds and R is expressible, then \mathcal{L} is incomplete.

Some exercises

Some exercises

Are the sets $(\tilde{A})^{*}$ and $\left(\tilde{A^{*}}\right)$ always the same?

Are the sets $(\tilde{A})^{*}$ and $\left(\tilde{A^{*}}\right)$ always the same?
The predicate H represents A iff for every n,

$$
H(n) \in \mathcal{P} \leftrightarrow n \in A
$$

Prove that if R^{*} is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Are the sets $(\tilde{A})^{*}$ and $\left(\tilde{A^{*}}\right)$ always the same?
The predicate H represents A iff for every n,

$$
H(n) \in \mathcal{P} \leftrightarrow n \in A
$$

Prove that if R^{*} is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^{*} and disjoint from P^{*}, then \mathcal{L} is incomplete.

Are the sets $(\tilde{A})^{*}$ and $\left(\tilde{A^{*}}\right)$ always the same?
The predicate H represents A iff for every n,

$$
H(n) \in \mathcal{P} \leftrightarrow n \in A
$$

Prove that if R^{*} is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^{*} and disjoint from P^{*}, then \mathcal{L} is incomplete.
Be A represented by $H_{h}, A \cap P^{*}=\emptyset, R^{*} \subseteq A$

Are the sets $(\tilde{A})^{*}$ and $\left(\tilde{A^{*}}\right)$ always the same?
The predicate H represents A iff for every n,

$$
H(n) \in \mathcal{P} \leftrightarrow n \in A
$$

Prove that if R^{*} is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^{*} and disjoint from P^{*}, then \mathcal{L} is incomplete.
Be A represented by $H_{h}, A \cap P^{*}=\emptyset, R^{*} \subseteq A$
$H_{h}(h) \in \mathcal{P} \leftrightarrow h \in A$

Are the sets $(\tilde{A})^{*}$ and $\left(\tilde{A^{*}}\right)$ always the same?
The predicate H represents A iff for every n,

$$
H(n) \in \mathcal{P} \leftrightarrow n \in A
$$

Prove that if R^{*} is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^{*} and disjoint from P^{*}, then \mathcal{L} is incomplete.
Be A represented by $H_{h}, A \cap P^{*}=\emptyset, R^{*} \subseteq A$

$$
d(h) \in P \leftrightarrow H_{h}(h) \in \mathcal{P} \leftrightarrow h \in A
$$

Are the sets $(\tilde{A})^{*}$ and $\left(\tilde{A^{*}}\right)$ always the same?
The predicate H represents A iff for every n,

$$
H(n) \in \mathcal{P} \leftrightarrow n \in A
$$

Prove that if R^{*} is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^{*} and disjoint from P^{*}, then \mathcal{L} is incomplete.
Be A represented by $H_{h}, A \cap P^{*}=\emptyset, R^{*} \subseteq A$
$h \in P^{*} \leftrightarrow d(h) \in P \leftrightarrow H_{h}(h) \in \mathcal{P} \leftrightarrow h \in A$

Are the sets $(\tilde{A})^{*}$ and $\left(\tilde{A^{*}}\right)$ always the same?
The predicate H represents A iff for every n,

$$
H(n) \in \mathcal{P} \leftrightarrow n \in A
$$

Prove that if R^{*} is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^{*} and disjoint from P^{*}, then \mathcal{L} is incomplete.
Be A represented by $H_{h}, A \cap P^{*}=\emptyset, R^{*} \subseteq A$
$h \in P^{*} \leftrightarrow d(h) \in P \leftrightarrow H_{h}(h) \in \mathcal{P} \leftrightarrow h \in A$
Therefore, $h \notin P^{*}, h \notin A$,

Are the sets $(\tilde{A})^{*}$ and $\left(\tilde{A^{*}}\right)$ always the same?
The predicate H represents A iff for every n,

$$
H(n) \in \mathcal{P} \leftrightarrow n \in A
$$

Prove that if R^{*} is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^{*} and disjoint from P^{*}, then \mathcal{L} is incomplete.
Be A represented by $H_{h}, A \cap P^{*}=\emptyset, R^{*} \subseteq A$
$h \in P^{*} \leftrightarrow d(h) \in P \leftrightarrow H_{h}(h) \in \mathcal{P} \leftrightarrow h \in A$
Therefore, $h \notin P^{*}, h \notin A, h \notin R^{*}$

Are the sets $(\tilde{A})^{*}$ and $\left(\tilde{A^{*}}\right)$ always the same?
The predicate H represents A iff for every n,

$$
H(n) \in \mathcal{P} \leftrightarrow n \in A
$$

Prove that if R^{*} is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^{*} and disjoint from P^{*}, then \mathcal{L} is incomplete.
Be A represented by $H_{h}, A \cap P^{*}=\emptyset, R^{*} \subseteq A$
$h \in P^{*} \leftrightarrow d(h) \in P \leftrightarrow H_{h}(h) \in \mathcal{P} \leftrightarrow h \in A$
Therefore, $h \notin P^{*}, h \notin A, h \notin R^{*}$
Consequently, $d(h)$, the Gödel-number of $H_{h}(h)$ is $\notin P$ and $\notin R$.

Two exercises for homework

Be \mathcal{L} a correct system where P^{*} is expressible. Suppose the following condition holds:
For any predicate H there is a predicate H^{\prime} s.t. for every n, $H^{\prime}(n)$ is provable iff $H(n)$ is refutable.
Prove that \mathcal{L} is incomplete.

Be \mathcal{L} a correct system where P^{*} is expressible. Suppose the following condition holds:
For any predicate H there is a predicate H^{\prime} s.t. for every n, $H^{\prime}(n)$ is provable iff $H(n)$ is refutable.
Prove that \mathcal{L} is incomplete.
Suppose that the following conditions hold in \mathcal{L} :

- The predicate E_{7} expresses P.
- If E_{n} is a predicate that names A then $E_{3 n}$ expresses \tilde{A}.
- If E_{n} is a predicate that names A then $E_{3 n+1}$ expresses A^{*}.

Two exercises for homework

Be \mathcal{L} a correct system where P^{*} is expressible. Suppose the following condition holds:
For any predicate H there is a predicate H^{\prime} s.t. for every n, $H^{\prime}(n)$ is provable iff $H(n)$ is refutable.
Prove that \mathcal{L} is incomplete.
Suppose that the following conditions hold in \mathcal{L} :

- The predicate E_{7} expresses P.
- If E_{n} is a predicate that names A then $E_{3 n}$ expresses \tilde{A}.
- If E_{n} is a predicate that names A then $E_{3 n+1}$ expresses A^{*}.
(1) Find numbers a and b s.t. $E_{a}(b)$ is true but not provable. Find the two solution for that both numbers are less than 100.

Be \mathcal{L} a correct system where P^{*} is expressible. Suppose the following condition holds:
For any predicate H there is a predicate H^{\prime} s.t. for every n, $H^{\prime}(n)$ is provable iff $H(n)$ is refutable.
Prove that \mathcal{L} is incomplete.
Suppose that the following conditions hold in \mathcal{L} :

- The predicate E_{7} expresses P.
- If E_{n} is a predicate that names A then $E_{3 n}$ expresses \tilde{A}.
- If E_{n} is a predicate that names A then $E_{3 n+1}$ expresses A^{*}.
(1) Find numbers a and b s.t. $E_{a}(b)$ is true but not provable. Find the two solution for that both numbers are less than 100.
(2) Prove that there are infinitely many such pairs (a, b).

Be \mathcal{L} a correct system where P^{*} is expressible. Suppose the following condition holds:
For any predicate H there is a predicate H^{\prime} s.t. for every n, $H^{\prime}(n)$ is provable iff $H(n)$ is refutable.
Prove that \mathcal{L} is incomplete.
Suppose that the following conditions hold in \mathcal{L} :

- The predicate E_{7} expresses P.
- If E_{n} is a predicate that names A then $E_{3 n}$ expresses \tilde{A}.
- If E_{n} is a predicate that names A then $E_{3 n+1}$ expresses A^{*}.
(1) Find numbers a and b s.t. $E_{a}(b)$ is true but not provable. Find the two solution for that both numbers are less than 100.
(2) Prove that there are infinitely many such pairs (a, b).
(3) Suppose that E_{10} is a predicate. Find (c, d) s.t. $E_{c}(d)$ is a Gödel sentence of the set named by E_{10}.

The language \mathcal{L}_{E} : Basic symbols

The language \mathcal{L}_{E} : Basic symbols

Alphabet:

$$
0,^{\prime}(,), f, \prime, v, \neg, \rightarrow, \forall,=, \leq, \sharp
$$

The language \mathcal{L}_{E} : Basic symbols

Alphabet:

$$
0,^{\prime}(,), f, \prime, v, \neg, \rightarrow, \forall,=, \leq, \sharp
$$

Numerals:

$$
0,0^{\prime}, 0^{\prime \prime}, 0^{\prime \prime \prime}, \ldots
$$

The language \mathcal{L}_{E} : Basic symbols

Alphabet:

$$
0,^{\prime}(,), f, \prime, v, \neg, \rightarrow, \forall,=, \leq, \sharp
$$

Numerals:

$$
0,0^{\prime}, 0^{\prime \prime}, 0^{\prime \prime \prime}, \ldots
$$

$f_{\prime}, f_{\prime \prime}^{\prime \prime}, f_{\prime \prime \prime}$: function symbols with the following intended meanings and abbreviations:

The language \mathcal{L}_{E} : Basic symbols

Alphabet:

$$
0,^{\prime}(,), f, \prime, v, \neg, \rightarrow, \forall,=, \leq, \sharp
$$

Numerals:

$$
0,0^{\prime}, 0^{\prime \prime}, 0^{\prime \prime \prime}, \ldots
$$

$f_{\prime}, f_{\prime \prime}^{\prime \prime}, f_{\prime \prime \prime}$: function symbols with the following intended meanings and abbreviations:
$f^{\prime}(x y): x+y$

The language \mathcal{L}_{E} : Basic symbols

Alphabet:

$$
0,^{\prime}(,), f, \prime, v, \neg, \rightarrow, \forall,=, \leq, \sharp
$$

Numerals:

$$
0,0^{\prime}, 0^{\prime \prime}, 0^{\prime \prime \prime}, \ldots
$$

$f_{\prime}, f_{\prime \prime}^{\prime \prime}, f_{\prime \prime \prime}$: function symbols with the following intended meanings and abbreviations:
$f_{1}(x y): x+y$
$f_{\prime \prime}^{\prime \prime}(x y): x \cdot y$

The language \mathcal{L}_{E} : Basic symbols

Alphabet:

$$
0,^{\prime}(,), f, \prime, v, \neg, \rightarrow, \forall,=, \leq, \sharp
$$

Numerals:

$$
0,0^{\prime}, 0^{\prime \prime}, 0^{\prime \prime \prime}, \ldots
$$

$f_{\prime}, f_{\prime \prime}^{\prime \prime}, f_{\prime \prime \prime}$: function symbols with the following intended meanings and abbreviations:

$$
\begin{aligned}
& f_{\prime}(x y): x+y \\
& f_{\prime \prime}(x y): x \cdot y \\
& f_{\prime \prime \prime}(x y): x \mathbf{E} y\left(: x^{y}\right)
\end{aligned}
$$

The language \mathcal{L}_{E} : Basic symbols

Alphabet:

$$
0,^{\prime}(,), f, \prime, v, \neg, \rightarrow, \forall,=, \leq, \sharp
$$

Numerals:

$$
0,0^{\prime}, 0^{\prime \prime}, 0^{\prime \prime \prime}, \ldots
$$

$f_{\prime}, f_{\prime \prime}^{\prime \prime}, f_{\prime \prime \prime}$: function symbols with the following intended meanings and abbreviations:
$f_{1}(x y): x+y$
$f_{\prime \prime}^{\prime \prime}(x y): x \cdot y$
$f_{\prime \prime \prime}^{\prime \prime}(x y): x \mathbf{E} y\left(: x^{y}\right)$
Variables: $v_{1}, v_{2}, v_{3} \ldots$, as abbreviations for:

$$
\left(v_{\prime}\right),\left(v_{\prime \prime}\right),\left(v_{\prime \prime \prime}\right) \ldots
$$

Syntax

Syntax

Terms:

Syntax

Terms:

(1) Variables and numerals are terms.

Syntax

Terms:

(1) Variables and numerals are terms.
(2) $t_{1}{ }^{\prime},\left(t_{1}+t_{2}\right),\left(t_{1} \cdot t_{2}\right),\left(t_{1} \mathbf{E} t_{2}\right)$ are terms.

Syntax

Terms:

(1) Variables and numerals are terms.
(2) $t_{1}{ }^{\prime},\left(t_{1}+t_{2}\right),\left(t_{1} \cdot t_{2}\right),\left(t_{1} \mathbf{E} t_{2}\right)$ are terms.

Terms containing no variables are called closed terms or constants.

Syntax

Terms:

(1) Variables and numerals are terms.
(2) $t_{1}{ }^{\prime},\left(t_{1}+t_{2}\right),\left(t_{1} \cdot t_{2}\right),\left(t_{1} \mathbf{E} t_{2}\right)$ are terms.

Terms containing no variables are called closed terms or constants.

Formulas:

Syntax

Terms:

(1) Variables and numerals are terms.
(2) $t_{1}{ }^{\prime},\left(t_{1}+t_{2}\right),\left(t_{1} \cdot t_{2}\right),\left(t_{1} \mathbf{E} t_{2}\right)$ are terms.

Terms containing no variables are called closed terms or constants.

Formulas:
$t_{1}=t_{2}$ and $t_{1} \leq t_{2}$ are atomic formulas.

Syntax

Terms:

(1) Variables and numerals are terms.
(2) $t_{1}{ }^{\prime},\left(t_{1}+t_{2}\right),\left(t_{1} \cdot t_{2}\right),\left(t_{1} \mathbf{E} t_{2}\right)$ are terms.

Terms containing no variables are called closed terms or constants.

Formulas:
$t_{1}=t_{2}$ and $t_{1} \leq t_{2}$ are atomic formulas.
$\neg F,(F \rightarrow G)$ are formulas and for any $i, \forall v_{i} F$ is a formula, too.

Syntax

Terms:

(1) Variables and numerals are terms.
(2) $t_{1}{ }^{\prime},\left(t_{1}+t_{2}\right),\left(t_{1} \cdot t_{2}\right),\left(t_{1} \mathbf{E} t_{2}\right)$ are terms.

Terms containing no variables are called closed terms or constants.

Formulas:
$t_{1}=t_{2}$ and $t_{1} \leq t_{2}$ are atomic formulas.
$\neg F,(F \rightarrow G)$ are formulas and for any $i, \forall v_{i} F$ is a formula, too.
Free and bounded occurrences of a variable v_{i} :

Syntax

Terms:

(1) Variables and numerals are terms.
(2) $t_{1}{ }^{\prime},\left(t_{1}+t_{2}\right),\left(t_{1} \cdot t_{2}\right),\left(t_{1} \mathbf{E} t_{2}\right)$ are terms.

Terms containing no variables are called closed terms or constants.

Formulas:
$t_{1}=t_{2}$ and $t_{1} \leq t_{2}$ are atomic formulas.
$\neg F,(F \rightarrow G)$ are formulas and for any $i, \forall v_{i} F$ is a formula, too.
Free and bounded occurrences of a variable v_{i} :

- In terms and atomic formulas, every occurrence is free.

Syntax

Terms:

(1) Variables and numerals are terms.
(2) $t_{1}{ }^{\prime},\left(t_{1}+t_{2}\right),\left(t_{1} \cdot t_{2}\right),\left(t_{1} \mathbf{E} t_{2}\right)$ are terms.

Terms containing no variables are called closed terms or constants.

Formulas:
$t_{1}=t_{2}$ and $t_{1} \leq t_{2}$ are atomic formulas.
$\neg F,(F \rightarrow G)$ are formulas and for any $i, \forall v_{i} F$ is a formula, too.
Free and bounded occurrences of a variable v_{i} :

- In terms and atomic formulas, every occurrence is free.
- In formulas $\neg F$ and $(F \rightarrow G)$ free occurrences are the same as in F resp. in F and G.

Syntax

Terms:

(1) Variables and numerals are terms.
(2) $t_{1}{ }^{\prime},\left(t_{1}+t_{2}\right),\left(t_{1} \cdot t_{2}\right),\left(t_{1} \mathbf{E} t_{2}\right)$ are terms.

Terms containing no variables are called closed terms or constants.

Formulas:
$t_{1}=t_{2}$ and $t_{1} \leq t_{2}$ are atomic formulas.
$\neg F,(F \rightarrow G)$ are formulas and for any $i, \forall v_{i} F$ is a formula, too.
Free and bounded occurrences of a variable v_{i} :

- In terms and atomic formulas, every occurrence is free.
- In formulas $\neg F$ and $(F \rightarrow G)$ free occurrences are the same as in F resp. in F and G.
- In $\forall v_{i} F, v_{i}$ has no free occurrences and all of its occurrences are called bounded.

Syntax

Terms:

(1) Variables and numerals are terms.
(2) $t_{1}{ }^{\prime},\left(t_{1}+t_{2}\right),\left(t_{1} \cdot t_{2}\right),\left(t_{1} \mathbf{E} t_{2}\right)$ are terms.

Terms containing no variables are called closed terms or constants.

Formulas:
$t_{1}=t_{2}$ and $t_{1} \leq t_{2}$ are atomic formulas.
$\neg F,(F \rightarrow G)$ are formulas and for any $i, \forall v_{i} F$ is a formula, too.
Free and bounded occurrences of a variable v_{i} :

- In terms and atomic formulas, every occurrence is free.
- In formulas $\neg F$ and $(F \rightarrow G)$ free occurrences are the same as in F resp. in F and G.
- In $\forall v_{i} F, v_{i}$ has no free occurrences and all of its occurrences are called bounded.
- If $j \neq i$, every free occurrence of v_{i} in F remains free in $\forall v_{j} F$.

Syntax, continuation

Syntax, continuation

Formulas with no free occurrence of any variable are called sentences or closed formulas.

Syntax, continuation

Formulas with no free occurrence of any variable are called sentences or closed formulas.

Abbreviations (metalanguage names) for numerals: \bar{n} for $0^{\prime \prime} \ldots{ }^{\prime}$ if the number of the commas is n.

Syntax, continuation

Formulas with no free occurrence of any variable are called sentences or closed formulas.

Abbreviations (metalanguage names) for numerals: \bar{n} for $0^{\prime \prime} \ldots{ }^{\prime}$ if the number of the commas is n.

Substitution (numeral for variable):

Syntax, continuation

Formulas with no free occurrence of any variable are called sentences or closed formulas.

Abbreviations (metalanguage names) for numerals: \bar{n} for $0^{\prime \prime} \ldots{ }^{\prime}$ if the number of the commas is n.

Substitution (numeral for variable):
If $F\left(v_{i}\right)$ is a formula with the single variable with free occurrences (single free variable) v_{i}, then $F(\bar{n})$ is the sentence where all the free occurrences of v_{i} are substituted with \bar{n}.

Syntax, continuation

Formulas with no free occurrence of any variable are called sentences or closed formulas.

Abbreviations (metalanguage names) for numerals: \bar{n} for $0^{\prime \prime} \ldots{ }^{\prime}$ if the number of the commas is n.

Substitution (numeral for variable):
If $F\left(v_{i}\right)$ is a formula with the single variable with free occurrences (single free variable) v_{i}, then $F(\bar{n})$ is the sentence where all the free occurrences of v_{i} are substituted with \bar{n}. If $F\left(v_{i_{1}}, v_{i_{2}}, \ldots v_{i_{n}}\right)$ is a formula all the free variables of which are $v_{i_{1}}, v_{i_{2}}, v_{i_{n}}$, then $F\left(\bar{k}_{1}, \bar{k}_{2}, \ldots \bar{k}_{n}\right)$ is the sentence where every $v_{i_{j}}$ is substituted with \bar{k}_{j}.

Syntax, continuation

Formulas with no free occurrence of any variable are called sentences or closed formulas.

Abbreviations (metalanguage names) for numerals: \bar{n} for $0^{\prime \prime} \ldots{ }^{\prime}$ if the number of the commas is n.

Substitution (numeral for variable):
If $F\left(v_{i}\right)$ is a formula with the single variable with free occurrences (single free variable) v_{i}, then $F(\bar{n})$ is the sentence where all the free occurrences of v_{i} are substituted with \bar{n}. If $F\left(v_{i_{1}}, v_{i_{2}}, \ldots v_{i_{n}}\right)$ is a formula all the free variables of which are $v_{i_{1}}, v_{i_{2}}, v_{i_{n}}$, then $F\left(\bar{k}_{1}, \bar{k}_{2}, \ldots \bar{k}_{n}\right)$ is the sentence where every $v_{i_{j}}$ is substituted with \bar{k}_{j}.
$F\left(v_{i_{1}}, v_{i_{2}}, \ldots v_{i_{n}}\right)$ is regular iff every $v_{i_{j}}$ is v_{j}.

Additions to the syntax

Additions to the syntax

The degree of a formula is the number of logical constant occurrences contained.

Additions to the syntax

The degree of a formula is the number of logical constant occurrences contained.

We can prove theorems for every formula by induction on the degrees.

Additions to the syntax

The degree of a formula is the number of logical constant occurrences contained.

We can prove theorems for every formula by induction on the degrees.

We use the logical symbols $\vee, \wedge, \leftrightarrow, \exists$ as abbreviations on the usual way. Further abbreviations:

Additions to the syntax

The degree of a formula is the number of logical constant occurrences contained.

We can prove theorems for every formula by induction on the degrees.

We use the logical symbols $\vee, \wedge, \leftrightarrow, \exists$ as abbreviations on the usual way. Further abbreviations:
$t_{1} \neq t_{2}$ for $\neg t_{1}=t_{2} ;$

Additions to the syntax

The degree of a formula is the number of logical constant occurrences contained.

We can prove theorems for every formula by induction on the degrees.

We use the logical symbols $\vee, \wedge, \leftrightarrow, \exists$ as abbreviations on the usual way. Further abbreviations:
$t_{1} \neq t_{2}$ for $\neg t_{1}=t_{2} ;$
$t_{1}<t_{2}$ for $t_{1} \leq t_{2} \wedge t_{1} \neq t_{2} ;$

Additions to the syntax

The degree of a formula is the number of logical constant occurrences contained.

We can prove theorems for every formula by induction on the degrees.

We use the logical symbols $\vee, \wedge, \leftrightarrow, \exists$ as abbreviations on the usual way. Further abbreviations:
$t_{1} \neq t_{2}$ for $\neg t_{1}=t_{2} ;$
$t_{1}<t_{2}$ for $t_{1} \leq t_{2} \wedge t_{1} \neq t_{2} ;$
$t_{1}^{t_{2}}$ for $t_{1} \mathbf{E} t_{2}$;

Additions to the syntax

The degree of a formula is the number of logical constant occurrences contained.

We can prove theorems for every formula by induction on the degrees.

We use the logical symbols $\vee, \wedge, \leftrightarrow, \exists$ as abbreviations on the usual way. Further abbreviations:
$t_{1} \neq t_{2}$ for $\neg t_{1}=t_{2} ;$
$t_{1}<t_{2}$ for $t_{1} \leq t_{2} \wedge t_{1} \neq t_{2} ;$
$t_{1}^{t_{2}}$ for $t_{1} \mathbf{E} t_{2}$;
$\left(\forall v_{i} \leq t\right) F$ for $\forall v_{i}\left(v_{i} \leq t \rightarrow F\right)$ and limited existential quantification on the similar way.

Finishing the language \mathcal{L}_{E}

Finishing the language \mathcal{L}_{E}

Substitution (variable for variable)

Finishing the language \mathcal{L}_{E}

Substitution (variable for variable)
Let $F\left(v_{1}\right)$ be a formula with one free variable. $F\left(v_{i}\right)(i \neq 1)$ is the following formula:

Finishing the language \mathcal{L}_{E}

Substitution (variable for variable)
Let $F\left(v_{1}\right)$ be a formula with one free variable. $F\left(v_{i}\right)(i \neq 1)$ is the following formula:

- If v_{i} has no bounded occurrences in $F\left(v_{1}\right)$, the formula where every free occurrence of v_{1} is substituted by v_{i};

Substitution (variable for variable)
Let $F\left(v_{1}\right)$ be a formula with one free variable. $F\left(v_{i}\right)(i \neq 1)$ is the following formula:

- If v_{i} has no bounded occurrences in $F\left(v_{1}\right)$, the formula where every free occurrence of v_{1} is substituted by v_{i};
- If v_{i} does occur in $F\left(v_{1}\right)$, then take the smallest j s.t. v_{j} does not occur in $F\left(v_{1}\right)$, substitute every (bounded) occurrence of v_{i} with v_{j}, and then proceed with the resulting formula as in the first clause.

Substitution (variable for variable)
Let $F\left(v_{1}\right)$ be a formula with one free variable. $F\left(v_{i}\right)(i \neq 1)$ is the following formula:

- If v_{i} has no bounded occurrences in $F\left(v_{1}\right)$, the formula where every free occurrence of v_{1} is substituted by v_{i};
- If v_{i} does occur in $F\left(v_{1}\right)$, then take the smallest j s.t. v_{j} does not occur in $F\left(v_{1}\right)$, substitute every (bounded) occurrence of v_{i} with v_{j}, and then proceed with the resulting formula as in the first clause.
With n-variable regular formulas $F\left(v_{1}, v_{2}, \ldots v_{n}\right)$ and substituting variables $v_{i_{1}}, v_{i_{2}}, \ldots v_{i_{n}}$, the procedure is similar.

Denotation and truth in \mathcal{L}_{E}

Denotation and truth in \mathcal{L}_{E}

We can define the denotation of a constant term of \mathcal{L}_{E} on the trivial way:

Denotation and truth in \mathcal{L}_{E}

We can define the denotation of a constant term of \mathcal{L}_{E} on the trivial way:
The numeral \bar{n} denotes the number n.

Denotation and truth in \mathcal{L}_{E}

We can define the denotation of a constant term of \mathcal{L}_{E} on the trivial way:
The numeral \bar{n} denotes the number n.
If c denotes n, then c^{\prime} denotes $n+1 ;\left(c_{1}+c_{2}\right)$ denotes the sum of of the numbers denoted by c_{1} and c_{2}, etc.

Denotation and truth in \mathcal{L}_{E}

We can define the denotation of a constant term of \mathcal{L}_{E} on the trivial way:
The numeral \bar{n} denotes the number n.
If c denotes n, then c^{\prime} denotes $n+1 ;\left(c_{1}+c_{2}\right)$ denotes the sum of of the numbers denoted by c_{1} and c_{2}, etc.

We have a similarly trivial definition of truth for the sentences of \mathcal{L}_{E}.

Denotation and truth in \mathcal{L}_{E}

We can define the denotation of a constant term of \mathcal{L}_{E} on the trivial way:
The numeral \bar{n} denotes the number n.
If c denotes n, then c^{\prime} denotes $n+1 ;\left(c_{1}+c_{2}\right)$ denotes the sum of of the numbers denoted by c_{1} and c_{2}, etc.

We have a similarly trivial definition of truth for the sentences of \mathcal{L}_{E}.
$c_{1}=c_{2}$ is true iff c_{1} and c_{2} denote the same number; $c_{1} \leq c_{2}$ is true iff c_{1} denotes a number less or equal than the number denoted by c_{2}.

Denotation and truth in \mathcal{L}_{E}

We can define the denotation of a constant term of \mathcal{L}_{E} on the trivial way:
The numeral \bar{n} denotes the number n.
If c denotes n, then c^{\prime} denotes $n+1 ;\left(c_{1}+c_{2}\right)$ denotes the sum of of the numbers denoted by c_{1} and c_{2}, etc.

We have a similarly trivial definition of truth for the sentences of \mathcal{L}_{E}.
$c_{1}=c_{2}$ is true iff c_{1} and c_{2} denote the same number; $c_{1} \leq c_{2}$ is true iff c_{1} denotes a number less or equal than the number denoted by c_{2}.
Logical constants work on the usual way. E.g.:

Denotation and truth in \mathcal{L}_{E}

We can define the denotation of a constant term of \mathcal{L}_{E} on the trivial way:
The numeral \bar{n} denotes the number n.
If c denotes n, then c^{\prime} denotes $n+1 ;\left(c_{1}+c_{2}\right)$ denotes the sum of of the numbers denoted by c_{1} and c_{2}, etc.

We have a similarly trivial definition of truth for the sentences of \mathcal{L}_{E}.
$c_{1}=c_{2}$ is true iff c_{1} and c_{2} denote the same number; $c_{1} \leq c_{2}$ is true iff c_{1} denotes a number less or equal than the number denoted by c_{2}.
Logical constants work on the usual way. E.g.: $\forall v_{i} F$ is true iff for every number $n, F(\bar{n})$ is true.

Denotation and truth in \mathcal{L}_{E}

We can define the denotation of a constant term of \mathcal{L}_{E} on the trivial way:
The numeral \bar{n} denotes the number n.
If c denotes n, then c^{\prime} denotes $n+1 ;\left(c_{1}+c_{2}\right)$ denotes the sum of of the numbers denoted by c_{1} and c_{2}, etc.

We have a similarly trivial definition of truth for the sentences of \mathcal{L}_{E}.
$c_{1}=c_{2}$ is true iff c_{1} and c_{2} denote the same number; $c_{1} \leq c_{2}$ is true iff c_{1} denotes a number less or equal than the number denoted by c_{2}.
Logical constants work on the usual way. E.g.: $\forall v_{i} F$ is true iff for every number $n, F(\bar{n})$ is true. $F(\bar{n})$ is of lower degree than $\forall v_{i} F$, therefore induction guarantees that this definition works.

