Abstract Gödelian languages: continuation

András Máté

23.02.2024

András Máté Gödel 23. Febr.

András Máté Gödel 23. Febr.

- 4 個 ト 4 ヨ ト 4 ヨ

Theorem T

i. \tilde{T}^* is not expressible.

ii. If G_1 holds, then \tilde{T} is not expressible.

iii. If G_1 and G_2 holds, then T is not expressible.

Theorem T

- i. \tilde{T}^* is not expressible.
- ii. If G_1 holds, then \tilde{T} is not expressible.
- iii. If G_1 and G_2 holds, then T is not expressible.

Proof of i. by D: If it is expressible, then \tilde{T} has a Gödel sentence. This sentence belongs to \mathcal{T} iff its Gödel number belongs to \tilde{T} . I.e., it is true iff it is false.

Theorem T

i. T^{*} is not expressible.
ii. If G₁ holds, then T is not expressible.
iii. If G₁ and G₂ holds, then T is not expressible.

Proof of i. by D: If it is expressible, then \tilde{T} has a Gödel sentence. This sentence belongs to \mathcal{T} iff its Gödel number belongs to \tilde{T} . I.e., it is true iff it is false.

Proofs of ii. and iii. by modus tollens from i. and the conditions.

Consistency, decidability and completeness

András Máté Gödel 23. Febr.

Consistency, decidability and completeness

\mathcal{L} is <u>consistent</u> iff \mathcal{P} and \mathcal{R} are disjoint; <u>inconsistent</u> otherwise.

 \mathcal{L} is <u>consistent</u> iff \mathcal{P} and \mathcal{R} are disjoint; <u>inconsistent</u> otherwise. Correct systems are always consistent, but not the other way. \mathcal{L} is <u>consistent</u> iff \mathcal{P} and \mathcal{R} are disjoint; <u>inconsistent</u> otherwise. Correct systems are always consistent, but not the other way. Sentence S is <u>decidable</u> iff it is either provable or refutable; <u>undecidable</u> otherwise. \mathcal{L} is <u>consistent</u> iff \mathcal{P} and \mathcal{R} are disjoint; <u>inconsistent</u> otherwise. Correct systems are always consistent, but not the other way. Sentence S is <u>decidable</u> iff it is either provable or refutable; <u>undecidable</u> otherwise.

 \mathcal{L} is complete iff every sentence is decidable; incomplete otherwise.

Two GT-like theorems

András Máté Gödel 23. Febr.

・ロト ・聞ト ・ヨト ・ヨト

E

Theorem 1. If \mathcal{L} is correct and \tilde{P}^* is expressible, then \mathcal{L} is incomplete.

If \mathcal{L} is correct and \tilde{P}^* is expressible, then \mathcal{L} is incomplete.

Theorem 1.^o (Dual of Theorem 1.) If \mathcal{L} is correct and R^* is expressible, then \mathcal{L} is incomplete.

If \mathcal{L} is correct and \tilde{P}^* is expressible, then \mathcal{L} is incomplete.

Theorem 1.^o (Dual of Theorem 1.) If \mathcal{L} is correct and R^* is expressible, then \mathcal{L} is incomplete.

Proof for Theorem 1.^o: If K_k expresses R^* , then $K_k(k)$ is true iff $k \in R^*$

If \mathcal{L} is correct and \tilde{P}^* is expressible, then \mathcal{L} is incomplete.

Theorem 1.^o (Dual of Theorem 1.) If \mathcal{L} is correct and R^* is expressible, then \mathcal{L} is incomplete.

Proof for Theorem 1.^o: If K_k expresses R^* , then $K_k(k)$ is true iff $k \in R^*$ iff $d(k) \in R$

If \mathcal{L} is correct and \tilde{P}^* is expressible, then \mathcal{L} is incomplete.

Theorem 1.^o (Dual of Theorem 1.) If \mathcal{L} is correct and R^* is expressible, then \mathcal{L} is incomplete.

Proof for Theorem 1.^o: If K_k expresses R^* , then $K_k(k)$ is true iff $k \in R^*$ iff $d(k) \in R$ But the Gödel-number of $K_k(k)$ is just d(k).

If \mathcal{L} is correct and \tilde{P}^* is expressible, then \mathcal{L} is incomplete.

Theorem 1.^o (Dual of Theorem 1.) If \mathcal{L} is correct and R^* is expressible, then \mathcal{L} is incomplete.

Proof for Theorem 1.^o: If K_k expresses R^* , then $K_k(k)$ is true iff $k \in R^*$ iff $d(k) \in R$ But the Gödel-number of $K_k(k)$ is just d(k). Therefore, $K_k(k)$ is true iff it is refutable.

If \mathcal{L} is correct and \tilde{P}^* is expressible, then \mathcal{L} is incomplete.

Theorem 1.^o (Dual of Theorem 1.) If \mathcal{L} is correct and R^* is expressible, then \mathcal{L} is incomplete.

Proof for Theorem 1.^o: If K_k expresses R^* , then $K_k(k)$ is true iff $k \in R^*$ iff $d(k) \in R$ But the Gödel-number of $K_k(k)$ is just d(k). Therefore, $K_k(k)$ is true iff it is refutable. By correctness, it is false but not refutable.

If \mathcal{L} is correct and \tilde{P}^* is expressible, then \mathcal{L} is incomplete.

Theorem 1.^o (Dual of Theorem 1.) If \mathcal{L} is correct and R^* is expressible, then \mathcal{L} is incomplete.

Proof for Theorem 1.^o: If K_k expresses R^* , then $K_k(k)$ is true iff $k \in R^*$ iff $d(k) \in R$ But the Gödel-number of $K_k(k)$ is just d(k). Therefore, $K_k(k)$ is true iff it is refutable. By correctness, it is false but not refutable.

Corollary: If G_1 holds and R is expressible, then \mathcal{L} is incomplete.

Some exercises

András Máté Gödel 23. Febr.

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

E

Image: A = A = A

The predicate H represents A iff for every n,

 $H(n) \in \mathcal{P} \leftrightarrow n \in A$

Prove that if R^* is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

The predicate H represents A iff for every n,

 $H(n) \in \mathcal{P} \leftrightarrow n \in A$

Prove that if R^* is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^* and disjoint from P^* , then \mathcal{L} is incomplete.

The predicate H represents A iff for every n,

 $H(n) \in \mathcal{P} \leftrightarrow n \in A$

Prove that if R^* is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^* and disjoint from P^* , then \mathcal{L} is incomplete. Be A represented by $H_h, A \cap P^* = \emptyset, R^* \subseteq A$

The predicate H represents A iff for every n,

 $H(n) \in \mathcal{P} \leftrightarrow n \in A$

Prove that if R^* is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^* and disjoint from P^* , then \mathcal{L} is incomplete. Be A represented by $H_h, A \cap P^* = \emptyset, R^* \subseteq A$ $H_h(h) \in \mathcal{P} \leftrightarrow h \in A$

The predicate H represents A iff for every n,

 $H(n) \in \mathcal{P} \leftrightarrow n \in A$

Prove that if R^* is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^* and disjoint from P^* , then \mathcal{L} is incomplete. Be A represented by $H_h, A \cap P^* = \emptyset, R^* \subseteq A$ $d(h) \in P \leftrightarrow H_h(h) \in \mathcal{P} \leftrightarrow h \in A$

The predicate H represents A iff for every n,

 $H(n) \in \mathcal{P} \leftrightarrow n \in A$

Prove that if R^* is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^* and disjoint from P^* , then \mathcal{L} is incomplete. Be A represented by H_h , $A \cap P^* = \emptyset$, $R^* \subseteq A$ $h \in P^* \leftrightarrow d(h) \in P \leftrightarrow H_h(h) \in \mathcal{P} \leftrightarrow h \in A$

The predicate H represents A iff for every n,

 $H(n) \in \mathcal{P} \leftrightarrow n \in A$

Prove that if R^* is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^* and disjoint from P^* , then \mathcal{L} is incomplete. Be A represented by $H_h, A \cap P^* = \emptyset, R^* \subseteq A$ $h \in P^* \leftrightarrow d(h) \in P \leftrightarrow H_h(h) \in \mathcal{P} \leftrightarrow h \in A$ Therefore, $h \notin P^*, h \notin A$,

The predicate H represents A iff for every n,

 $H(n) \in \mathcal{P} \leftrightarrow n \in A$

Prove that if R^* is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^* and disjoint from P^* , then \mathcal{L} is incomplete. Be A represented by $H_h, A \cap P^* = \emptyset, R^* \subseteq A$ $h \in P^* \leftrightarrow d(h) \in P \leftrightarrow H_h(h) \in \mathcal{P} \leftrightarrow h \in A$ Therefore, $h \notin P^*$, $h \notin A, h \notin R^*$

The predicate H represents A iff for every n,

 $H(n) \in \mathcal{P} \leftrightarrow n \in A$

Prove that if R^* is representable and \mathcal{L} is consistent, then \mathcal{L} is incomplete.

Prove the following: If there is a representable set that contains R^* and disjoint from P^* , then \mathcal{L} is incomplete. Be A represented by H_h , $A \cap P^* = \emptyset$, $R^* \subseteq A$ $h \in P^* \leftrightarrow d(h) \in P \leftrightarrow H_h(h) \in \mathcal{P} \leftrightarrow h \in A$ Therefore, $h \notin P^*$, $h \notin A$, $h \notin R^*$ Consequently, d(h), the Gödel-number of $H_h(h)$ is $\notin P$ and $\notin R$.

András Máté Gödel 23. Febr.

1

Be \mathcal{L} a correct system where P^* is expressible. Suppose the following condition holds:

For any predicate H there is a predicate H^\prime s.t. for every n,

H'(n) is provable iff H(n) is refutable.

Prove that \mathcal{L} is incomplete.

Be \mathcal{L} a correct system where P^* is expressible. Suppose the following condition holds:

For any predicate H there is a predicate H' s.t. for every n, H'(n) is provable iff H(n) is refutable. Prove that \mathcal{L} is incomplete.

- The predicate E_7 expresses P.
- If E_n is a predicate that names A then E_{3n} expresses \tilde{A} .
- If E_n is a predicate that names A then E_{3n+1} expresses A^* .

Be \mathcal{L} a correct system where P^* is expressible. Suppose the following condition holds:

For any predicate H there is a predicate H' s.t. for every n, H'(n) is provable iff H(n) is refutable. Prove that \mathcal{L} is incomplete.

- The predicate E_7 expresses P.
- If E_n is a predicate that names A then E_{3n} expresses \tilde{A} .
- If E_n is a predicate that names A then E_{3n+1} expresses A^* .
- Find numbers a and b s.t. $E_a(b)$ is true but not provable. Find the two solution for that both numbers are less than 100.

Be \mathcal{L} a correct system where P^* is expressible. Suppose the following condition holds:

For any predicate H there is a predicate H' s.t. for every n, H'(n) is provable iff H(n) is refutable. Prove that \mathcal{L} is incomplete.

- The predicate E_7 expresses P.
- If E_n is a predicate that names A then E_{3n} expresses \tilde{A} .
- If E_n is a predicate that names A then E_{3n+1} expresses A^* .
- Find numbers a and b s.t. $E_a(b)$ is true but not provable. Find the two solution for that both numbers are less than 100.
- **2** Prove that there are infinitely many such pairs (a, b).

Be \mathcal{L} a correct system where P^* is expressible. Suppose the following condition holds:

For any predicate H there is a predicate H' s.t. for every n, H'(n) is provable iff H(n) is refutable. Prove that \mathcal{L} is incomplete.

- The predicate E_7 expresses P.
- If E_n is a predicate that names A then E_{3n} expresses \tilde{A} .
- If E_n is a predicate that names A then E_{3n+1} expresses A^* .
- Find numbers a and b s.t. $E_a(b)$ is true but not provable. Find the two solution for that both numbers are less than 100.
- **2** Prove that there are infinitely many such pairs (a, b).
- Suppose that E_{10} is a predicate. Find (c, d) s.t. $E_c(d)$ is a Gödel sentence of the set named by E_{10} .

András Máté Gödel 23. Febr.

▲御▶ ▲ 国▶ ▲

Alphabet:

$$0, \ '(, \), \ f, \ \prime, \ v, \ \neg, \ \rightarrow, \ \forall, \ =, \ \leq, \ \sharp$$

1

Alphabet:

<u>Numerals</u>:

 $0, 0', 0'', 0''', \dots$

표 문 표

Alphabet:

<u>Numerals</u>:

$$0, 0', 0'', 0''', \ldots$$

 $f_{\prime}, f_{\prime\prime}, f_{\prime\prime\prime}$: function symbols with the following intended meanings and abbreviations:

Alphabet:

<u>Numerals</u>:

$$0, 0', 0'', 0''', \ldots$$

 $f_{\prime}, f_{\prime\prime}, f_{\prime\prime\prime}$: function symbols with the following intended meanings and abbreviations:

f'(xy): x+y

▲冊▶ ▲ 匣▶ ▲

Alphabet:

<u>Numerals</u>:

$$0, 0', 0'', 0''', \ldots$$

 $f_{\prime}, f_{\prime\prime}, f_{\prime\prime\prime}$: function symbols with the following intended meanings and abbreviations:

f'(xy): x+y $f''(xy): x \cdot y$

▲ 同 ▶ → 目 ▶

Alphabet:

$$0,\ '\,(,\),\ f,\ \prime,\ v,\ \neg,\ \rightarrow,\ \forall,\ =,\ \leq,\ \sharp$$

<u>Numerals</u>:

$$0, 0', 0'', 0''', \ldots$$

 $f_{\prime}, f_{\prime\prime}, f_{\prime\prime\prime}$: function symbols with the following intended meanings and abbreviations:

f'(xy): x + y $f''(xy): x \cdot y$ $f'''(xy): x Ey(: x^y)$

Alphabet:

0, '(,), f, ', v,
$$\neg$$
, \rightarrow , \forall , =, \leq , \sharp

<u>Numerals</u>:

$$0, 0', 0'', 0''', \ldots$$

 $f_{\prime}, f_{\prime\prime}, f_{\prime\prime\prime}$: function symbols with the following intended meanings and abbreviations:

$$f'(xy): x + y$$

$$f''(xy): x \cdot y$$

$$f'''(xy): xEy(: x^y)$$
Variables: $v_1, v_2, v_3...$, as abbreviations for:
 $(v_{\prime}), (v_{\prime\prime}), (v_{\prime\prime\prime})...$

< (10) >

András Máté Gödel 23. Febr.

▲ロト ▲御ト ▲注ト ▲注ト

Э

$\underline{\mathrm{Terms}}$:

András Máté Gödel 23. Febr.

▲ロト ▲御ト ▲注ト ▲注ト

Э

<u>Terms</u>:

• Variables and numerals are terms.

• • • • • • • • • • •

E

 $\underline{\mathrm{Terms}}$:

- Variables and numerals are terms.
- \bullet $t_1', (t_1 + t_2), (t_1 \cdot t_2), (t_1 \mathbf{E} t_2)$ are terms.

A 🕨 🔸

<u>Terms</u>:

• Variables and numerals are terms.

2 $t_1', (t_1 + t_2), (t_1 \cdot t_2), (t_1 \mathbf{E} t_2)$ are terms.

Terms containing no variables are called $\underline{closed \ terms}$ or $\underline{constants}$.

<u>Terms</u>:

• Variables and numerals are terms.

 \bullet $t_1', (t_1 + t_2), (t_1 \cdot t_2), (t_1 \mathbf{E} t_2)$ are terms.

Terms containing no variables are called $\underline{closed \ terms}$ or $\underline{constants}$.

Formulas:

<u>Terms</u>:

• Variables and numerals are terms.

 \bullet $t_1', (t_1 + t_2), (t_1 \cdot t_2), (t_1 \mathbf{E} t_2)$ are terms.

Terms containing no variables are called <u>closed terms</u> or <u>constants</u>.

Formulas:

 $t_1 = t_2$ and $t_1 \leq t_2$ are <u>atomic</u> formulas.

<u>Terms</u>:

• Variables and numerals are terms.

 \bullet $t_1', (t_1 + t_2), (t_1 \cdot t_2), (t_1 \mathbf{E} t_2)$ are terms.

Terms containing no variables are called $\underline{closed \ terms}$ or $\underline{constants}$.

Formulas:

 $t_1 = t_2$ and $t_1 \leq t_2$ are <u>atomic</u> formulas. $\neg F$, $(F \rightarrow G)$ are formulas and for any $i, \forall v_i F$ is a formula, too.

<u>Terms</u>:

• Variables and numerals are terms.

 \bullet $t_1', (t_1 + t_2), (t_1 \cdot t_2), (t_1 \mathbf{E} t_2)$ are terms.

Terms containing no variables are called $\underline{closed \ terms}$ or $\underline{constants}$.

Formulas:

 $t_1 = t_2$ and $t_1 \leq t_2$ are <u>atomic</u> formulas.

 $\neg F$, $(F \rightarrow G)$ are formulas and for any $i, \forall v_i F$ is a formula, too.

<u>Free and bounded occurrences</u> of a variable v_i :

<u>Terms</u>:

• Variables and numerals are terms.

 \bullet $t_1', (t_1 + t_2), (t_1 \cdot t_2), (t_1 \mathbf{E} t_2)$ are terms.

Terms containing no variables are called $\underline{closed \ terms}$ or $\underline{constants}$.

Formulas:

 $t_1 = t_2$ and $t_1 \leq t_2$ are <u>atomic</u> formulas.

 $\neg F$, $(F \rightarrow G)$ are formulas and for any $i, \forall v_i F$ is a formula, too.

<u>Free and bounded occurrences</u> of a variable v_i :

• In terms and atomic formulas, every occurrence is free.

<u>Terms</u>:

• Variables and numerals are terms.

2 $t_1', (t_1 + t_2), (t_1 \cdot t_2), (t_1 \mathbf{E} t_2)$ are terms.

Terms containing no variables are called $\underline{closed \ terms}$ or $\underline{constants}$.

Formulas:

 $t_1 = t_2$ and $t_1 \leq t_2$ are <u>atomic</u> formulas.

 $\neg F$, $(F \rightarrow G)$ are formulas and for any $i, \forall v_i F$ is a formula, too.

<u>Free and bounded occurrences</u> of a variable v_i :

- In terms and atomic formulas, every occurrence is free.
- In formulas $\neg F$ and $(F \rightarrow G)$ free occurrences are the same as in F resp. in F and G.

・ 戸 ト ・ ヨ ト ・

<u>Terms</u>:

• Variables and numerals are terms.

2 $t_1', (t_1 + t_2), (t_1 \cdot t_2), (t_1 \mathbf{E} t_2)$ are terms.

Terms containing no variables are called $\underline{closed \ terms}$ or $\underline{constants}$.

Formulas:

 $t_1 = t_2$ and $t_1 \leq t_2$ are <u>atomic</u> formulas.

 $\neg F$, $(F \rightarrow G)$ are formulas and for any $i, \forall v_i F$ is a formula, too.

<u>Free and bounded occurrences</u> of a variable v_i :

- In terms and atomic formulas, every occurrence is free.
- In formulas $\neg F$ and $(F \rightarrow G)$ free occurrences are the same as in F resp. in F and G.
- In ∀v_iF, v_i has no free occurrences and all of its occurrences are called bounded.

<u>Terms</u>:

• Variables and numerals are terms.

2 $t_1', (t_1 + t_2), (t_1 \cdot t_2), (t_1 \mathbf{E} t_2)$ are terms.

Terms containing no variables are called $\underline{closed \ terms}$ or $\underline{constants}$.

Formulas:

 $t_1 = t_2$ and $t_1 \leq t_2$ are <u>atomic</u> formulas.

 $\neg F$, $(F \rightarrow G)$ are formulas and for any $i, \forall v_i F$ is a formula, too.

<u>Free and bounded occurrences</u> of a variable v_i :

- In terms and atomic formulas, every occurrence is free.
- In formulas $\neg F$ and $(F \rightarrow G)$ free occurrences are the same as in F resp. in F and G.
- In ∀v_iF, v_i has no free occurrences and all of its occurrences are called bounded.
- If $j \neq i$, every free occurrence of v_i in F remains free in $\forall v_j F$.

Syntax, continuation

András Máté Gödel 23. Febr.

Syntax, continuation

Formulas with no free occurrence of any variable are called <u>sentences</u> or <u>closed formulas</u>.

Syntax, continuation

Formulas with no free occurrence of any variable are called <u>sentences</u> or <u>closed formulas</u>.

Abbreviations (metalanguage names) for numerals: \bar{n} for 0''...' if the number of the commas is n.

Abbreviations (metalanguage names) for numerals: \bar{n} for 0''...' if the number of the commas is n.

<u>Substitution</u> (numeral for variable):

Abbreviations (metalanguage names) for numerals: \bar{n} for 0''...' if the number of the commas is n.

<u>Substitution</u> (numeral for variable):

If $F(v_i)$ is a formula with the single variable with free occurrences (single free variable) v_i , then $F(\bar{n})$ is the sentence where all the free occurrences of v_i are substituted with \bar{n} .

Abbreviations (metalanguage names) for numerals: \bar{n} for 0''...' if the number of the commas is n.

<u>Substitution</u> (numeral for variable):

If $F(v_i)$ is a formula with the single variable with free occurrences (single free variable) v_i , then $F(\bar{n})$ is the sentence where all the free occurrences of v_i are substituted with \bar{n} . If $F(v_{i_1}, v_{i_2}, \ldots, v_{i_n})$ is a formula all the free variables of which are $v_{i_1}, v_{i_2}, v_{i_n}$, then $F(\bar{k}_1, \bar{k}_2, \ldots, \bar{k}_n)$ is the sentence where every v_{i_j} is substituted with \bar{k}_j .

Abbreviations (metalanguage names) for numerals: \bar{n} for 0''...' if the number of the commas is n.

<u>Substitution</u> (numeral for variable):

If $F(v_i)$ is a formula with the single variable with free occurrences (single free variable) v_i , then $F(\bar{n})$ is the sentence where all the free occurrences of v_i are substituted with \bar{n} . If $F(v_{i_1}, v_{i_2}, \ldots, v_{i_n})$ is a formula all the free variables of which are $v_{i_1}, v_{i_2}, v_{i_n}$, then $F(\bar{k}_1, \bar{k}_2, \ldots, \bar{k}_n)$ is the sentence where every v_{i_j} is substituted with \bar{k}_j .

 $F(v_{i_1}, v_{i_2}, \ldots, v_{i_n})$ is <u>regular</u> iff every v_{i_j} is v_j .

伺下 イヨト イヨト

Additions to the syntax

András Máté Gödel 23. Febr.

Additions to the syntax

The degree of a formula is the number of logical constant occurrences contained.

▲ □ ► < □ ►</p>

We can prove theorems for every formula by induction on the degrees.

We can prove theorems for every formula by induction on the degrees.

We use the logical symbols \lor , \land , \leftrightarrow , \exists as abbreviations on the usual way. Further abbreviations:

We can prove theorems for every formula by induction on the degrees.

We use the logical symbols \lor , \land , \leftrightarrow , \exists as abbreviations on the usual way. Further abbreviations:

 $t_1 \neq t_2$ for $\neg t_1 = t_2$;

We can prove theorems for every formula by induction on the degrees.

We use the logical symbols \lor , \land , \leftrightarrow , \exists as abbreviations on the usual way. Further abbreviations:

```
t_1 \neq t_2 for \neg t_1 = t_2;
```

```
t_1 < t_2 \text{ for } t_1 \le t_2 \land t_1 \ne t_2;
```

We can prove theorems for every formula by induction on the degrees.

We use the logical symbols \lor , \land , \leftrightarrow , \exists as abbreviations on the usual way. Further abbreviations:

 $t_1 \neq t_2 \text{ for } \neg t_1 = t_2;$ $t_1 < t_2 \text{ for } t_1 \leq t_2 \land t_1 \neq t_2;$ $t_1^{t_2} \text{ for } t_1 \mathbf{E} t_2;$

We can prove theorems for every formula by induction on the degrees.

We use the logical symbols \lor , \land , \leftrightarrow , \exists as abbreviations on the usual way. Further abbreviations:

 $t_1 \neq t_2$ for $\neg t_1 = t_2$; $t_1 < t_2$ for $t_1 \leq t_2 \wedge t_1 \neq t_2$; $t_1^{t_2}$ for $t_1 \mathbf{E} t_2$; $(\forall v_i \leq t)F$ for $\forall v_i(v_i \leq t \rightarrow F)$ and limited existential quantification on the similar way.

András Máté Gödel 23. Febr.

Let $F(v_1)$ be a formula with one free variable. $F(v_i)$ $(i \neq 1)$ is the following formula:

< A > < A > >

Let $F(v_1)$ be a formula with one free variable. $F(v_i)$ $(i \neq 1)$ is the following formula:

• If v_i has no bounded occurrences in $F(v_1)$, the formula where every free occurrence of v_1 is substituted by v_i ;

Let $F(v_1)$ be a formula with one free variable. $F(v_i)$ $(i \neq 1)$ is the following formula:

- If v_i has no bounded occurrences in $F(v_1)$, the formula where every free occurrence of v_1 is substituted by v_i ;
- If v_i does occur in $F(v_1)$, then take the smallest j s.t. v_j does not occur in $F(v_1)$, substitute every (bounded) occurrence of v_i with v_j , and then proceed with the resulting formula as in the first clause.

Let $F(v_1)$ be a formula with one free variable. $F(v_i)$ $(i \neq 1)$ is the following formula:

- If v_i has no bounded occurrences in $F(v_1)$, the formula where every free occurrence of v_1 is substituted by v_i ;
- If v_i does occur in $F(v_1)$, then take the smallest j s.t. v_j does not occur in $F(v_1)$, substitute every (bounded) occurrence of v_i with v_j , and then proceed with the resulting formula as in the first clause.

With *n*-variable regular formulas $F(v_1, v_2, \ldots v_n)$ and substituting variables $v_{i_1}, v_{i_2}, \ldots v_{i_n}$, the procedure is similar.

Denotation and truth in \mathcal{L}_E

András Máté Gödel 23. Febr.

Denotation and truth in \mathcal{L}_E

We can define the <u>denotation</u> of a constant term of \mathcal{L}_E on the trivial way:

The numeral \bar{n} denotes the number n.

The numeral \bar{n} denotes the number n.

If c denotes n, then c' denotes n + 1; $(c_1 + c_2)$ denotes the sum of of the numbers denoted by c_1 and c_2 , etc.

The numeral \bar{n} denotes the number n.

If c denotes n, then c' denotes n + 1; $(c_1 + c_2)$ denotes the sum of of the numbers denoted by c_1 and c_2 , etc.

We have a similarly trivial <u>definition of truth</u> for the **sentences** of \mathcal{L}_E .

The numeral \bar{n} denotes the number n.

If c denotes n, then c' denotes n + 1; $(c_1 + c_2)$ denotes the sum of of the numbers denoted by c_1 and c_2 , etc.

We have a similarly trivial <u>definition of truth</u> for the **sentences** of \mathcal{L}_E .

 $c_1 = c_2$ is true iff c_1 and c_2 denote the same number; $c_1 \leq c_2$ is true iff c_1 denotes a number less or equal than the number denoted by c_2 .

The numeral \bar{n} denotes the number n.

If c denotes n, then c' denotes n + 1; $(c_1 + c_2)$ denotes the sum of of the numbers denoted by c_1 and c_2 , etc.

We have a similarly trivial <u>definition of truth</u> for the **sentences** of \mathcal{L}_E .

 $c_1 = c_2$ is true iff c_1 and c_2 denote the same number; $c_1 \leq c_2$ is true iff c_1 denotes a number less or equal than the number denoted by c_2 .

Logical constants work on the usual way. E.g.:

→ 同 ト → 三 ト →

The numeral \bar{n} denotes the number n.

If c denotes n, then c' denotes n + 1; $(c_1 + c_2)$ denotes the sum of of the numbers denoted by c_1 and c_2 , etc.

We have a similarly trivial <u>definition of truth</u> for the **sentences** of \mathcal{L}_E .

 $c_1 = c_2$ is true iff c_1 and c_2 denote the same number; $c_1 \leq c_2$ is true iff c_1 denotes a number less or equal than the number denoted by c_2 .

Logical constants work on the usual way. E.g.:

 $\forall v_i F$ is true iff for every number $n, F(\bar{n})$ is true.

→ 同 ト → 三 ト →

The numeral \bar{n} denotes the number n.

If c denotes n, then c' denotes n + 1; $(c_1 + c_2)$ denotes the sum of of the numbers denoted by c_1 and c_2 , etc.

We have a similarly trivial <u>definition of truth</u> for the **sentences** of \mathcal{L}_E .

 $c_1 = c_2$ is true iff c_1 and c_2 denote the same number; $c_1 \leq c_2$ is true iff c_1 denotes a number less or equal than the number denoted by c_2 .

Logical constants work on the usual way. E.g.:

 $\forall v_i F$ is true iff for every number $n, F(\bar{n})$ is true.

 $F(\bar{n})$ is of lower degree than $\forall v_i F$, therefore induction guarantees that this definition works.

(人間) トイヨト イヨト