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An abstract Tarski-like theorem

Theorem T

i. T̃ ∗ is not expressible.
ii. If G1 holds, then T̃ is not expressible.

iii. If G1 and G2 holds, then T is not expressible.

Proof of i. by D: If it is expressible, then T̃ has a Gödel

sentence. This sentence belongs to T i� its Gödel number

belongs to T̃ . I.e., it is true i� it is false.

Proofs of ii. and iii. by modus tollens from i. and the conditions.
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Consistency, decidability and completeness

L is consistent i� P and R are disjoint; inconsistent otherwise.

Correct systems are always consistent, but not the other way.

Sentence S is decidable i� it is either provable or refutable;

undecidable otherwise.

L is complete i� every sentence is decidable; incomplete

otherwise.
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Two GT-like theorems

Theorem 1.

If L is correct and P̃ ∗ is expressible, then L is incomplete.

Theorem 1.o (Dual of Theorem 1.)

If L is correct and R∗ is expressible, then L is incomplete.

Proof for Theorem 1.o:
If Kk expresses R∗, then Kk(k) is true i� k ∈ R∗ i� d(k) ∈ R
But the Gödel-number of Kk(k) is just d(k).
Therefore, Kk(k) is true i� it is refutable. By correctness, it is

false but not refutable.

Corollary: If G1 holds and R is expressible, then L is

incomplete.
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Some exercises

Are the sets (Ã)∗ and ˜(A∗) always the same?

The predicate H represents A i� for every n,

H(n) ∈ P ↔ n ∈ A

Prove that if R∗ is representable and L is consistent, then L is

incomplete.

Prove the following: If there is a representable set that contains

R∗ and disjoint from P ∗, then L is incomplete.

Be A represented by Hh, A ∩ P ∗ = ∅, R∗ ⊆ A
h ∈ P ∗ ↔d(h) ∈ P ↔Hh(h) ∈ P ↔ h ∈ A
Therefore, h /∈ P ∗, h /∈ A, h /∈ R∗

Consequently, d(h), the Gödel-number of Hh(h) is
/∈ P and /∈ R.
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Two exercises for homework

Be L a correct system where P ∗ is expressible. Suppose the
following condition holds:

For any predicate H there is a predicate H ′ s.t. for every n,
H ′(n) is provable i� H(n) is refutable.
Prove that L is incomplete.

Suppose that the following conditions hold in L:
The predicate E7 expresses P .

If En is a predicate that names A then E3n expresses Ã.

If En is a predicate that names A then E3n+1 expresses A∗.

1 Find numbers a and b s.t. Ea(b) is true but not provable.
Find the two solution for that both numbers are less than

100.

2 Prove that there are in�nitely many such pairs (a, b).

3 Suppose that E10 is a predicate. Find (c, d) s.t. Ec(d) is a
Gödel sentence of the set named by E10.

András Máté Gödel 23. Febr.



Two exercises for homework

Be L a correct system where P ∗ is expressible. Suppose the
following condition holds:

For any predicate H there is a predicate H ′ s.t. for every n,
H ′(n) is provable i� H(n) is refutable.
Prove that L is incomplete.

Suppose that the following conditions hold in L:
The predicate E7 expresses P .

If En is a predicate that names A then E3n expresses Ã.
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The language LE: Basic symbols

Alphabet:

0, ′ (, ), f, ′ , v, ¬, →, ∀, =, ≤, ]

Numerals:

0, 0′, 0′′, 0′′′, . . .

f′ , f′′ , f′′′ : function symbols with the following intended

meanings and abbreviations:

f′(xy) : x + y

f′′(xy) : x · y

f′′′(xy) : xEy(: xy)

Variables: v1, v2, v3 . . ., as abbreviations for:

(v′), (v′′), (v′′′) . . .
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f′′′(xy) : xEy(: xy)

Variables: v1, v2, v3 . . ., as abbreviations for:

(v′), (v′′), (v′′′) . . .
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Syntax

Terms:
1 Variables and numerals are terms.
2 t1

′, (t1 + t2), (t1 · t2), (t1Et2) are terms.

Terms containing no variables are called closed terms or

constants.

Formulas:

t1 = t2 and t1 ≤ t2 are atomic formulas.

¬F , (F → G) are formulas and for any i, ∀viF is a formula, too.

Free and bounded occurrences of a variable vi:

In terms and atomic formulas, every occurrence is free.

In formulas ¬F and (F → G) free occurrences are the same

as in F resp. in F and G.

In ∀viF , vi has no free occurrences and all of its

occurrences are called bounded.

If j 6= i, every free occurrence of vi in F remains free in

∀vjF .
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Syntax, continuation

Formulas with no free occurrence of any variable are called

sentences or closed formulas.

Abbreviations (metalanguage names) for numerals: n̄ for 0
′′...′ if

the number of the commas is n.

Substitution (numeral for variable):

If F (vi) is a formula with the single variable with free

occurrences (single free variable) vi, then F (n̄) is the sentence
where all the free occurrences of vi are substituted with n̄.
If F (vi1 , vi2 , . . . vin) is a formula all the free variables of which

are vi1 , vi2 , vin , then F (k̄1, k̄2, . . . k̄n) is the sentence where every
vij is substituted with k̄j .

F (vi1 , vi2 , . . . vin) is regular i� every vij is vj .
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Additions to the syntax

The degree of a formula is the number of logical constant

occurrences contained.

We can prove theorems for every formula by induction on the

degrees.

We use the logical symbols ∨, ∧, ↔, ∃ as abbreviations on the

usual way. Further abbreviations:

t1 6= t2 for ¬t1 = t2;

t1 < t2 for t1 ≤ t2 ∧ t1 6= t2;

tt21 for t1Et2;

(∀vi ≤ t)F for ∀vi(vi ≤ t→ F ) and limited existential

quanti�cation on the similar way.
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Finishing the language LE

Substitution (variable for variable)

Let F (v1) be a formula with one free variable. F (vi) (i 6= 1) is
the following formula:

If vi has no bounded occurrences in F (v1), the formula

where every free occurrence of v1 is substituted by vi;

If vi does occur in F (v1), then take the smallest j s.t. vj
does not occur in F (v1), substitute every (bounded)

occurrence of vi with vj , and then proceed with the

resulting formula as in the �rst clause.

With n-variable regular formulas F (v1, v2, . . . vn) and
substituting variables vi1 , vi2 , . . . vin , the procedure is similar.
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Denotation and truth in LE

We can de�ne the denotation of a constant term of LE on the

trivial way:

The numeral n̄ denotes the number n.
If c denotes n, then c′ denotes n + 1; (c1 + c2) denotes the sum
of of the numbers denoted by c1 and c2, etc.

We have a similarly trivial de�nition of truth for the sentences

of LE .
c1 = c2 is true i� c1 and c2 denote the same number; c1 ≤ c2 is

true i� c1 denotes a number less or equal than the number

denoted by c2.
Logical constants work on the usual way. E.g.:

∀viF is true i� for every number n, F (n̄) is true.
F (n̄) is of lower degree than ∀viF , therefore induction
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