Gödel's Incompleteness theorems Spring Semester 2024

András Máté

Eötvös Loránd University Budapest Institute of Philosophy, Department of Logic mate.andras53@gmail.com

16.02.2024

András Máté Gödel 16. Febr.

András Máté Gödel 16. Febr.

イロト イヨト イヨト イヨト

Э

• Source (= textbook):

Smullyan, R., *Gödel's Incompleteness Theorems*, Oxford: Oxford U.P., 1992.

• Source (= textbook):

Smullyan, R., *Gödel's Incompleteness Theorems*, Oxford: Oxford U.P., 1992.

• Necessary preliminary knowledge: first-order logic.

• Source (= textbook):

Smullyan, R., *Gödel's Incompleteness Theorems*, Oxford: Oxford U.P., 1992.

- Necessary preliminary knowledge: first-order logic.
- Method: lecture + solving problems

• Source (= textbook):

Smullyan, R., *Gödel's Incompleteness Theorems*, Oxford: Oxford U.P., 1992.

- Necessary preliminary knowledge: first-order logic.
- Method: lecture + solving problems
- Evaluation: solving problems (during the classes or in the exam period).

• Source (= textbook):

Smullyan, R., *Gödel's Incompleteness Theorems*, Oxford: Oxford U.P., 1992.

- Necessary preliminary knowledge: first-order logic.
- Method: lecture + solving problems
- Evaluation: solving problems (during the classes or in the exam period).
- Webpage: http://phil.elte.hu/mate/incompl/incompl.html. Presentations (pdf-s) will be published after the classes.

Let's play Gödel

András Máté Gödel 16. Febr.

<ロト < 聞 > < 臣 > < 臣 >

1

Let's play Gödel

A machine prints out finite strings of the five-letter alphabet

 $\neg \; P \; N$ ()

▲ □ ► < □ ►</p>

-

 $\neg \; P \; N$ ()

Expression is any non-empty finite string.

< 同 > < 三 >

 $\neg \; P \; N$ ()

 $\underline{\text{Expression}} \text{ is any non-empty finite string.}$ $\underline{\text{Sentence}} \text{ is a string of one of the following 4 forms:}$

$$P(X), \neg P(X), PN(X), \neg PN(X)$$

where X is any expression.

 $\neg \; P \; N$ ()

 $\underline{\text{Expression}} \text{ is any non-empty finite string.}$ $\underline{\text{Sentence}} \text{ is a string of one of the following 4 forms:}$

 $P(X), \neg P(X), PN(X), \neg PN(X)$

where X is any expression. Norm of the expression X: the string X(X)

 $\neg \; P \; N$ ()

 $\underline{\text{Expression}} \text{ is any non-empty finite string.}$ $\underline{\text{Sentence}} \text{ is a string of one of the following 4 forms:}$

$$P(X), \neg P(X), PN(X), \neg PN(X)$$

where X is any expression. <u>Norm</u> of the expression X: the string X(X)<u>Meaning</u>: P(X) means: 'X is printable', PN(X): The norm of \overline{X} is printable', \neg means negation.

 $\neg \; P \; N$ ()

 $P(X), \neg P(X), PN(X), \neg PN(X)$

where X is any expression.

<u>Norm</u> of the expression X: the string X(X)

<u>Meaning</u>: P(X) means: 'X is printable', PN(X): The norm of X is printable', \neg means negation.

<u>Truth</u>: P(X) is true iff the machine will sometimes print the string X; PN(X) is true iff it will print the norm of X.

(4 冊 ト 4 三 ト 4 三 ト

 $\neg \; P \; N$ ()

 $P(X), \neg P(X), PN(X), \neg PN(X)$

where X is any expression.

<u>Norm</u> of the expression X: the string X(X)

<u>Meaning</u>: P(X) means: 'X is printable', PN(X): The norm of \overline{X} is printable', \neg means negation.

<u>Truth</u>: P(X) is true iff the machine will sometimes print the string X; PN(X) is true iff it will print the norm of X. This machine has a Gödelian(-Tarskian) property.

・ 通 ト ・ 三 ト ・

András Máté Gödel 16. Febr.

<ロト <四ト < 回ト < 回ト

1

A language \mathcal{L} coming with the following sets:

< 同 > < 三 >

A language \mathcal{L} coming with the following sets:

• \mathcal{E} : expressions (countably many).

A language \mathcal{L} coming with the following sets:

- \mathcal{E} : expressions (countably many).
- **2** $\mathcal{S} \subseteq \mathcal{E}$: sentences.

A language \mathcal{L} coming with the following sets:

- \mathcal{E} : expressions (countably many).
- **2** $\mathcal{S} \subseteq \mathcal{E}$: sentences.

A language \mathcal{L} coming with the following sets:

- \mathcal{E} : expressions (countably many).
- $\textcircled{O} \ \mathcal{S} \subseteq \mathcal{E}: \text{ sentences.}$
- $\textcircled{0} \mathcal{P} \subseteq \mathcal{S}: \text{ provable sentences.}$

A language \mathcal{L} coming with the following sets:

- \mathcal{E} : expressions (countably many).
- $\textcircled{O} \ \mathcal{S} \subseteq \mathcal{E}: \text{ sentences.}$
- **4** $\mathcal{R} \subseteq \mathcal{S}$: refutable (disprovable) sentences.

Thought of as names for sets of [natural] numbers.

A language \mathcal{L} coming with the following sets:

- \mathcal{E} : expressions (countably many).
- **2** $\mathcal{S} \subseteq \mathcal{E}$: sentences.
- **4** $\mathcal{R} \subseteq \mathcal{S}$: refutable (disprovable) sentences.
- Operation \$\mathcal{H}\$ ⊆ \$\mathcal{E}\$: predicates.
 Thought of as names for sets of [natural] numbers.
- A function Φ that assigns to every expression E and every number n an expression E(n) and satisfies:

• If $H \in \mathcal{H}$, then $H(n) \in \mathcal{S}$

[H(n) 'means' that n belongs to the set H.]

A language \mathcal{L} coming with the following sets:

- \mathcal{E} : expressions (countably many).
- **2** $\mathcal{S} \subseteq \mathcal{E}$: sentences.
- **4** $\mathcal{R} \subseteq \mathcal{S}$: refutable (disprovable) sentences.
- Operation \$\mathcal{H}\$ ⊆ \$\mathcal{E}\$: predicates.
 Thought of as names for sets of [natural] numbers.
- A function Φ that assigns to every expression E and every number n an expression E(n) and satisfies:

• If $H \in \mathcal{H}$, then $H(n) \in \mathcal{S}$

[H(n) 'means' that n belongs to the set H.]

• $\mathcal{T} \subseteq \mathcal{S}$: true sentences.

András Máté Gödel 16. Febr.

1

• A set A of numbers is <u>nameable</u> or <u>expressible</u> in \mathcal{L} iff there is a predicate H s.t.

$$H(n) \in \mathcal{T} \leftrightarrow n \in A$$

H expresses or <u>names</u> A.

• A set A of numbers is <u>nameable</u> or <u>expressible</u> in \mathcal{L} iff there is a predicate H s.t.

$$H(n) \in \mathcal{T} \leftrightarrow n \in A$$

H expresses or <u>names</u> A.

• \mathcal{L} is <u>correct</u> iff $\mathcal{P} \subseteq \mathcal{T}$ and $\mathcal{R} \subseteq \mathcal{S} - \mathcal{T}$.

• A set A of numbers is <u>nameable</u> or <u>expressible</u> in \mathcal{L} iff there is a predicate H s.t.

$$H(n) \in \mathcal{T} \leftrightarrow n \in A$$

H expresses or <u>names</u> A.

- \mathcal{L} is <u>correct</u> iff $\mathcal{P} \subseteq \mathcal{T}$ and $\mathcal{R} \subseteq \mathcal{S} \mathcal{T}$.
- A <u>Gödel numbering</u> is a one-to-one mapping from \mathcal{E} to the set of numbers N.

g(E) is the <u>Gödel number</u> of E.

The expression with the Gödel number n is referred to as E_n .

• A set A of numbers is <u>nameable</u> or <u>expressible</u> in \mathcal{L} iff there is a predicate H s.t.

$$H(n) \in \mathcal{T} \leftrightarrow n \in A$$

H expresses or <u>names</u> A.

- \mathcal{L} is <u>correct</u> iff $\mathcal{P} \subseteq \mathcal{T}$ and $\mathcal{R} \subseteq \mathcal{S} \mathcal{T}$.
- A <u>Gödel numbering</u> is a one-to-one mapping from \mathcal{E} to the set of numbers N.

g(E) is the <u>Gödel number</u> of E.

The expression with the Gödel number n is referred to as E_n .

• The diagonalization of E_n is the expression $E_n(n)$. Let the Gödel number of $E_n(n)$ be d(n). d is the diagonal function of the system.

• A set A of numbers is <u>nameable</u> or <u>expressible</u> in \mathcal{L} iff there is a predicate H s.t.

$$H(n) \in \mathcal{T} \leftrightarrow n \in A$$

H expresses or <u>names</u> A.

- \mathcal{L} is <u>correct</u> iff $\mathcal{P} \subseteq \mathcal{T}$ and $\mathcal{R} \subseteq \mathcal{S} \mathcal{T}$.
- A <u>Gödel numbering</u> is a one-to-one mapping from \mathcal{E} to the set of numbers N.

g(E) is the <u>Gödel number</u> of E.

The expression with the Gödel number n is referred to as E_n .

- The diagonalization of E_n is the expression $E_n(n)$. Let the Gödel number of $E_n(n)$ be d(n). d is the diagonal function of the system.
- For any $A \subseteq N$, let A^* be the set of numbers s. t.

$$n \in A^* \leftrightarrow d(n) \in A$$

An abstract Gödel-Tarski-type theorem

András Máté Gödel 16. Febr.

An abstract Gödel-Tarski-type theorem

Notation:

- \tilde{A} is the set of numbers not in A.
- ${\cal P}$ is the set of Gödel numbers of provable sentences.

- \tilde{A} is the set of numbers not in A.
- ${\cal P}$ is the set of Gödel numbers of provable sentences.

Theorem GT:

If \mathcal{L} is correct and \tilde{P}^* is expressible, then there is a true sentence in \mathcal{L} which is not provable in \mathcal{L}

 \tilde{A} is the set of numbers not in A.

 ${\cal P}$ is the set of Gödel numbers of provable sentences.

Theorem GT:

If \mathcal{L} is correct and \tilde{P}^* is expressible, then there is a true sentence in \mathcal{L} which is not provable in \mathcal{L} Let H express \tilde{P}^* , g(H) = h. Let us consider the diagonalization of H, H(h).

 \tilde{A} is the set of numbers not in A.

P is the set of Gödel numbers of provable sentences.

Theorem GT:

If \mathcal{L} is correct and \tilde{P}^* is expressible, then there is a true sentence in \mathcal{L} which is not provable in \mathcal{L} Let H express \tilde{P}^* , g(H) = h. Let us consider the diagonalization of H, H(h).

 \tilde{A} is the set of numbers not in A.

P is the set of Gödel numbers of provable sentences.

Theorem GT:

If \mathcal{L} is correct and \tilde{P}^* is expressible, then there is a true sentence in \mathcal{L} which is not provable in \mathcal{L} Let H express \tilde{P}^* , g(H) = h. Let us consider the diagonalization of H, H(h).

$$H(h) \in \mathcal{T} \leftrightarrow h \in \tilde{P}^*$$

 \tilde{A} is the set of numbers not in A.

P is the set of Gödel numbers of provable sentences.

Theorem GT:

If \mathcal{L} is correct and \tilde{P}^* is expressible, then there is a true sentence in \mathcal{L} which is not provable in \mathcal{L} Let H express \tilde{P}^* , g(H) = h. Let us consider the diagonalization of H, H(h).

$$H(h) \in \mathcal{T} \leftrightarrow h \in \tilde{P}^* \leftrightarrow d(h) \in \tilde{P}$$

 \tilde{A} is the set of numbers not in A.

P is the set of Gödel numbers of provable sentences. Theorem **GT**:

If \mathcal{L} is correct and \tilde{P}^* is expressible, then there is a true sentence in \mathcal{L} which is not provable in \mathcal{L} Let H express \tilde{P}^* , g(H) = h. Let us consider the diagonalization of H, H(h).

$$H(h) \in \mathcal{T} \leftrightarrow h \in \tilde{P}^* \leftrightarrow d(h) \in \tilde{P} \leftrightarrow d(h) \notin P$$

 \tilde{A} is the set of numbers not in A.

P is the set of Gödel numbers of provable sentences. Theorem **GT**:

If \mathcal{L} is correct and \tilde{P}^* is expressible, then there is a true sentence in \mathcal{L} which is not provable in \mathcal{L} Let H express \tilde{P}^* , g(H) = h. Let us consider the diagonalization of H, H(h).

For any n, H(n) is true iff $n \in \tilde{P}^*$. This holds for h, too.

$$H(h) \in \mathcal{T} \leftrightarrow h \in \tilde{P}^* \leftrightarrow d(h) \in \tilde{P} \leftrightarrow d(h) \notin P$$

d(h) is the Gödel number of H(h). Hence, H(h) is true iff it is not provable.

András Máté Gödel 16. Febr.

András Máté Gödel 16. Febr.

• (G_1) If A is expressible in \mathcal{L} , then A^* is expressible, too.

- (G_1) If A is expressible in \mathcal{L} , then A^* is expressible, too.
- (G₂) If A is expressible in \mathcal{L} , then \tilde{A} is expressible, too.

- (G_1) If A is expressible in \mathcal{L} , then A^* is expressible, too.
- (G₂) If A is expressible in \mathcal{L} , then \tilde{A} is expressible, too.
- (G_3) P is expressible.

- (G_1) If A is expressible in \mathcal{L} , then A^* is expressible, too.
- (G_2) If A is expressible in \mathcal{L} , then \tilde{A} is expressible, too.
- (G_3) P is expressible.

In the practical cases: G_1 is easy, G_2 is trivial, G_3 is difficult.

- (G_1) If A is expressible in \mathcal{L} , then A^* is expressible, too.
- (G_2) If A is expressible in \mathcal{L} , then \tilde{A} is expressible, too.
- (G_3) P is expressible.

In the practical cases: G_1 is easy, G_2 is trivial, G_3 is difficult.

The sentence E_n is a <u>Gödel sentence</u> for the set A iff

 $E_n \in \mathcal{T} \leftrightarrow n \in A$

A diagonal lemma

András Máté Gödel 16. Febr.

i. If A^* is expressible, then A has a Gödel sentence (for any A set of numbers).

ii. If G_1 holds and A is expressible, then there is a Gödel sentence for A.

i. If A^* is expressible, then A has a Gödel sentence (for any A set of numbers).

ii. If G_1 holds and A is expressible, then there is a Gödel sentence for A.

Proof for i. is straightforward: Let us suppose that H_h expresses A^* .

i. If A^* is expressible, then A has a Gödel sentence (for any A set of numbers).

ii. If G_1 holds and A is expressible, then there is a Gödel sentence for A.

Proof for i. is straightforward: Let us suppose that H_h expresses A^* .

 $H_h(h) \in \mathcal{T} \leftrightarrow h \in A^* \leftrightarrow d(h) \in A$

i. If A^* is expressible, then A has a Gödel sentence (for any A set of numbers).

ii. If G_1 holds and A is expressible, then there is a Gödel sentence for A.

Proof for i. is straightforward: Let us suppose that H_h expresses A^* .

$$H_h(h) \in \mathcal{T} \leftrightarrow h \in A^* \leftrightarrow d(h) \in A$$

But d(h) is just the Gödel number of $H_h(h)$. Therefore, $H_h(h)$ is a Gödel sentence for A.

i. If A^* is expressible, then A has a Gödel sentence (for any A set of numbers).

ii. If G_1 holds and A is expressible, then there is a Gödel sentence for A.

Proof for i. is straightforward: Let us suppose that H_h expresses A^* .

$$H_h(h) \in \mathcal{T} \leftrightarrow h \in A^* \leftrightarrow d(h) \in A$$

But d(h) is just the Gödel number of $H_h(h)$. Therefore, $H_h(h)$ is a Gödel sentence for A.

ii. follows from i. and G_1 .

Homework:

1. Prove that if our toy machine prints only true sentences, then it cannot print all the true sentences of the given alphabet.

2. Prove \mathbf{GT} from \mathbf{D} .