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General

Source (= textbook):
Smullyan, R., Gödel's Incompleteness Theorems, Oxford:
Oxford U.P., 1992.

Necessary preliminary knowledge: �rst-order logic.

Method: lecture + solving problems

Evaluation: solving problems (during the classes or in the
exam period).

Webpage: http://phil.elte.hu/mate/incompl/incompl.html.
Presentations (pdf-s) will be published after the classes.
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Let's play Gödel

A machine prints out �nite strings of the �ve-letter alphabet

¬ P N ( )

Expression is any non-empty �nite string.
Sentence is a string of one of the following 4 forms:

P (X),¬P (X), PN(X),¬PN(X)

where X is any expression.
Norm of the expression X: the string X(X)
Meaning: P (X) means: `X is printable', PN(X): The norm of
X is printable', ¬ means negation.
Truth: P (X) is true i� the machine will sometimes print the
string X; PN(X) is true i� it will print the norm of X.
This machine has a Gödelian(-Tarskian) property.
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General framework

A language L coming with the following sets:

1 E : expressions (countably many).

2 S ⊆ E : sentences.
3 P ⊆ S: provable sentences.
4 R ⊆ S: refutable (disprovable) sentences.
5 H ⊆ E : predicates.

Thought of as names for sets of [natural] numbers.
6 A function Φ that assigns to every expression E and every

number n an expression E(n) and satis�es:

If H ∈ H, then H(n) ∈ S
[H(n) `means' that n belongs to the set H.]

7 T ⊆ S: true sentences.
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Some concepts

A set A of numbers is nameable or expressible in L i� there
is a predicate H s.t.

H(n) ∈ T ↔ n ∈ A

H expresses or names A.
L is correct i� P ⊆ T and R ⊆ S − T .
A Gödel numbering is a one-to-one mapping from E to the
set of numbers N .
g(E) is the Gödel number of E.
The expression with the Gödel number n is referred to as
En.
The diagonalization of En is the expression En(n).
Let the Gödel number of En(n) be d(n).
d is the diagonal function of the system.
For any A ⊆ N , let A∗ be the set of numbers s. t.

n ∈ A∗ ↔ d(n) ∈ A
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An abstract Gödel-Tarski-type theorem

Notation:
Ã is the set of numbers not in A.
P is the set of Gödel numbers of provable sentences.
Theorem GT:
If L is correct and P̃ ∗ is expressible, then there is a true
sentence in L which is not provable in L
Let H express P̃ ∗, g(H) = h. Let us consider the
diagonalization of H, H(h).
For any n, H(n) is true i� n ∈ P̃ ∗. This holds for h, too.

H(h) ∈ T ↔ h ∈ P̃ ∗ ↔ d(h) ∈ P̃ ↔ d(h) /∈ P

d(h) is the Gödel number of H(h). Hence, H(h) is true i� it is
not provable.
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Gödel-conditions and sentences

Three conditions that are (together) su�cient for the
expressibility of P̃ ∗:

(G1) If A is expressible in L, then A∗ is expressible, too.

(G2) If A is expressible in L, then Ã is expressible, too.

(G3) P is expressible.

In the practical cases: G1 is easy, G2 is trivial, G3 is di�cult.

The sentence En is a Gödel sentence for the set A i�

En ∈ T ↔ n ∈ A
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A diagonal lemma

Lemma D

i. If A∗ is expressible, then A has a Gödel sentence (for any A
set of numbers).
ii. If G1 holds and A is expressible, then there is a Gödel
sentence for A.

Proof for i. is straightforward:
Let us suppose that Hh expresses A∗.

Hh(h) ∈ T ↔ h ∈ A∗ ↔ d(h) ∈ A

But d(h) is just the Gödel number of Hh(h). Therefore, Hh(h) is
a Gödel sentence for A.

ii. follows from i. and G1.
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Homework:

1. Prove that if our toy machine prints only true sentences, then
it cannot print all the true sentences of the given alphabet.

2. Prove GT from D.
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