LÁSZLÓ E. SZABÓ Home Publications Courses Links CV Department Home

Philosophy of Science I
The problem of physical truth

This semester the lectures will be given in Hungarian
Hungarian title: Tudományfilozófia I. - A fizikai igazság problémája

lecture course
Friday 14:00 - 15:30  Room -104


Codes: BMA-FILD-391.1 BBN-FIL-315.11  xxxn9520  BBN-FIL-401.45  FLN-300:26  BMA-LOTD-205  BMA-FILD-391.1  TANM-FIL-401.11  BMI-LOTD-205E

The course provides an introduction to modern analytic philosophy of science. I shall focus on the central epistemological problems concerning empirical sciences like physics; and I shall discuss these issues on a formal/logical basis. Finally I sketch a naturalized philosophy of science based on what I call physicalist philosophy of mathematics -- an account for scientific knowledge, both a priori and empirical, within a purely physicalist ontology. 


Readings:
  1. Samir Okasha: Philosophy of Science - A Very Short Introduction, Oxford University Press 2002
  2. Thomas Uebel: Vienna Circle, The Stanford Encyclopedia of Philosophy (Spring 2013 Edition), Edward N. Zalta (ed.) (http://plato.stanford.edu/entries/vienna-circle/)
  3. John Vickers: The Problem of Induction, The Stanford Encyclopedia of Philosophy (Spring 2013 Edition), Edward N. Zalta (ed.) (http://plato.stanford.edu/entries/induction-problem/)
  4. Robert Sinclair: Quine’s Philosophy of Science, Internet Encyclopedia of Philosophy (http://www.iep.utm.edu/quine-sc)
  5. L. E. Szabó: Mathematical facts in a physicalist ontology, Parallel Processing Letters, 22 (2012) 1240009 (12 pages), DOI: 10.1142/S0129626412400099 [preprint]
  6. L. E. Szabó: Formal Systems as Physical Objects: A Physicalist Account of Mathematical Truth, International Studies in the Philosophy of Science, 17 (2003) pp. 117 – 125 (preprint: PDF)
  7. T. Kuhn: Scientific Revolutions, in The Philosophy of Science, R. Boyd et al. (eds.), MIT Press 1991, pp. 139-157.
  8. Széljegyzetek Kuhn könyvéhez (E. Szabó): 


Credit requirements
:
  • Philosophy undergraduates can pass the exam only from the material of Readings 1, 2, 3, 4, 7
  • Science Faculty and Computer Science Faculty students can pass the exam only from the material of the lectures
  • PhD and MA students must prepare from Readings 1-7 + the complete material of the lectures, including the more formal approaches too.
  • PhD students, in addition, must write a 5-10 page course paper in English, arguing against  the main theses I am proposing in the lecture course


2011-11-14




Archives


  



Hempel
Schlick


Hilbert
Fine


Ayer
Grünbaum


Gödel
Russell


Bell
Salmon


Carnap
Kant


Kuhn
Lakatos


Cartwright
Lewis

Hume
Reichenbach


Einstein
Friedman


Poincaré
Van Fraassen


Hahn
Mach


Putnam
Quine


Popper
Earman



 
2008